• español
    • English
  • español 
    • español
    • English
  • Login
Ver ítem 
  •   Repositorio Principal
  • Facultad de Arquitectura, Diseño y Construcción
  • Investigación
  • Ver ítem
  •   Repositorio Principal
  • Facultad de Arquitectura, Diseño y Construcción
  • Investigación
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pattern Recognition and Deep Learning Technologies, Enablers of Industry 4.0, and Their Role in Engineering Research

Thumbnail
Ver/
262.pdf (4.090Mb)
Metadatos
Mostrar el registro completo del ítem
Autor
Serey, Joel
Alfaro, Miguel
Fuertes, Guillermo
Vargas, Manuel
Durán, Claudia
Ternero, Rodrigo
Rivera, Ricardo
Sabattin, Jorge
Datos de publicación (Editorial):
MDPI
Materias (Palabras claves):
Deep learning
Pattern recognition
Data management
Inteligencia artificial
Fecha de publicación:
2023
Resumen:
The purpose of this study is to summarize the pattern recognition (PR) and deep learning (DL) artificial intelligence methods developed for the management of data in the last six years. The methodology used for the study of documents is a content analysis. For this study, 186 references are considered, from which 120 are selected for the literature review. First, a general introduction to artificial intelligence is presented, in which PR/DL methods are studied and their relevance to data management evaluated. Next, a literature review is provided of the most recent applications of PR/DL, and the capacity of these methods to process large volumes of data is evaluated. The analysis of the literature also reveals the main applications, challenges, approaches, advantages, and disadvantages of using these methods. Moreover, we discuss the main measurement instruments; the methodological contributions by study areas and research domain; and major databases, journals, and countries that contribute to the field of study. Finally, we identify emerging research trends, their limitations, and possible future research paths.
URI
http://repositorio.udla.cl/xmlui/handle/udla/1215
https://www.mdpi.com/journal/symmetry
Colecciones:
  • Investigación
Derechos reservados Universidad de Las Américas
 

 

Listar

Todo RepositorioComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasEsta colecciónPor fecha de publicaciónAutoresTítulosMaterias

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso
Derechos reservados Universidad de Las Américas