Mostrar el registro sencillo del ítem

dc.contributor.authorAutorSerey, Joel
dc.contributor.authorAutorAlfaro, Miguel
dc.contributor.authorAutorFuertes, Guillermo
dc.contributor.authorAutorVargas, Manuel
dc.contributor.authorAutorDurán, Claudia
dc.contributor.authorAutorTernero, Rodrigo
dc.contributor.authorAutorRivera, Ricardo
dc.contributor.authorAutorSabattinz, Jorge
dc.date.accessionedFecha ingreso2024-09-03T19:12:25Z
dc.date.availableFecha disponible2024-09-03T19:12:25Z
dc.date.issuedFecha publicación2023
dc.identifier.citationReferencia BibliográficaSymmetry, 15(2), 29 p.
dc.identifier.issnISSN2073-8994
dc.identifier.uriURLhttp://repositorio.udla.cl/xmlui/handle/udla/1215
dc.identifier.uriURLhttps://www.mdpi.com/journal/symmetry
dc.description.abstractResumenThe purpose of this study is to summarize the pattern recognition (PR) and deep learning (DL) artificial intelligence methods developed for the management of data in the last six years. The methodology used for the study of documents is a content analysis. For this study, 186 references are considered, from which 120 are selected for the literature review. First, a general introduction to artificial intelligence is presented, in which PR/DL methods are studied and their relevance to data management evaluated. Next, a literature review is provided of the most recent applications of PR/DL, and the capacity of these methods to process large volumes of data is evaluated. The analysis of the literature also reveals the main applications, challenges, approaches, advantages, and disadvantages of using these methods. Moreover, we discuss the main measurement instruments; the methodological contributions by study areas and research domain; and major databases, journals, and countries that contribute to the field of study. Finally, we identify emerging research trends, their limitations, and possible future research paths.
dc.format.extentdc.format.extent29 páginas
dc.format.extentdc.format.extent4.090Mb
dc.format.mimetypedc.format.mimetypePDF
dc.language.isoLenguaje ISOeng
dc.publisherEditorMDPI
dc.rightsDerechosCreative Commons Attribution License (CC BY)
dc.sourceFuentesSymmetry
dc.subjectPalabras ClavesDeep learning
dc.subjectPalabras ClavesPattern recognition
dc.subjectPalabras ClavesData management
dc.subject.lcshdc.subject.lcshInteligencia artificial
dc.titleTítuloPattern Recognition and Deep Learning Technologies, Enablers of Industry 4.0, and Their Role in Engineering Research
dc.typeTipo de DocumentoArtículo de revisión
dc.udla.catalogadordc.udla.catalogadorCBM
dc.udla.indexdc.udla.indexWoS
dc.udla.indexdc.udla.indexScience Citation Index Expanded
dc.udla.indexdc.udla.indexScopus
dc.udla.indexdc.udla.indexAcademic Search Ultimate
dc.udla.indexdc.udla.indexDOAJ
dc.udla.indexdc.udla.indexINSPEC
dc.udla.indexdc.udla.indexTechnology Collection
dc.udla.indexdc.udla.indexTechnology Collection
dc.identifier.doidc.identifier.doi10.3390/sym15020535
dc.facultaddc.facultadFacultad de Arquitectura, Animación, Diseño y Construcción


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem