• español
    • English
  • español 
    • español
    • English
  • Login
Ver ítem 
  •   Repositorio Principal
  • Facultad de Ingeniería y Negocios
  • Investigación
  • Ver ítem
  •   Repositorio Principal
  • Facultad de Ingeniería y Negocios
  • Investigación
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transcriptome data analysis applied to grapevine growth stage identification

Thumbnail
Ver/
Artículo (2.124Mb)
Metadatos
Mostrar el registro completo del ítem
Autor
Altimiras Gonzalez, Francisco Javier
Pávez Díaz, Leonardo Ignacio
Pourreza, Alireza
Yáñez Osses, Osvaldo Andrés
González Rodríguez, Lisdelys
García, José
Galaz, Claudio
Leiva Araos, Andrés
Allende Cid, Héctor
Datos de publicación (Editorial):
MDPI
Materias (Palabras claves):
Phenology
Gene expression
Vitis vinifera
RNA sequencing
Fecha de publicación:
2024
Resumen:
In agricultural production, it is fundamental to characterize the phenological stage of plants to ensure a good evaluation of the development, growth and health of crops. Phenological characterization allows for the early detection of nutritional deficiencies in plants that diminish the growth and productive yield and drastically affect the quality of their fruits. Currently, the phenological estimation of development in grapevine (Vitis vinifera) is carried out using four different schemes: Baillod and Baggiolini, Extended BBCH, Eichhorn and Lorenz, and Modified E-L. Phenological estimation requires the exhaustive evaluation of crops, which makes it intensive in terms of labor, personnel, and the time required for its application. In this work, we propose a new phenological classification based on transcriptional measures of certain genes to accurately estimate the stage of development of grapevine. There are several genomic information databases for Vitis vinifera, and the function of thousands of their genes has been widely characterized. The application of advanced molecular biology, including the massive parallel sequencing of RNA (RNA-seq), and the handling of large volumes of data provide state-of-the-art tools for the determination of phenological stages, on a global scale, of the molecular functions and processes of plants. With this aim, we applied a bioinformatic pipeline for the high-throughput quantification of RNA-seq datasets and further analysis of gene ontology terms. We identified differentially expressed genes in several datasets, and then, we associated them with the corresponding phenological stage of development. Differentially expressed genes were classified using count-based expression analysis and clustering and annotated using gene ontology data. This work contributes to the use of transcriptome data and gene expression analysis for the classification of development in plants, with a wide range of industrial applications in agriculture.
URI
http://repositorio.udla.cl/xmlui/handle/udla/1745
Carrera:
Facultad de ingeniería y negocios
Colecciones:
  • Investigación
Derechos reservados Universidad de Las Américas
 

 

Listar

Todo RepositorioComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasEsta colecciónPor fecha de publicaciónAutoresTítulosMaterias

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso
Derechos reservados Universidad de Las Américas