• español
    • English
  • español 
    • español
    • English
  • Login
Ver ítem 
  •   Repositorio Principal
  • Facultad de Ingeniería y Negocios
  • Investigación
  • Ver ítem
  •   Repositorio Principal
  • Facultad de Ingeniería y Negocios
  • Investigación
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Study of heavy metals adsorption using a silicate-based material: Experiments and theoretical insights

Thumbnail
Ver/
Artículo (3.626Mb)
Metadatos
Mostrar el registro completo del ítem
Autor
González Rodríguez, Lisdelys
Hidalgo Rosa, Yoan
Prieto García, Julio Omar
Treto Suárez, Manuel A
Mena Ulecia, Karel
Yáñez Osses, Osvaldo Andrés.
Datos de publicación (Editorial):
Elsevier
Materias (Palabras claves):
Adsorción (LC)
Metales pesados (LC)
Kinetic study
Magnesium silicate
Theoretical study
Fecha de publicación:
2024
Resumen:
Heavy metal toxicity in water is a serious problem with harmful effects on human health and the ecosystem. This research studied a silicate-based material as an adsorbent for removing four heavy metals from aqueous solutions. The target metal pollutants selected include manganese (Mn2+), copper (Cu2+), cobalt (Co2+), and zinc (Zn2+). First, theoretical tools including potential energy surface analysis, Natural Population Analysis, AIM, Wiberg Bond Index, QTAIM, and topological methods offer profound insights into the nature of interactions present in the Mg2O8Si3M (M = Mn2+, Cu2+, Co2+, Zn2+) clusters. Second, the synthesis and characterization of eco-friendly hydrated amorphous magnesium silicate (MgOSiO2nH2O) was developed. Last, a simple kinetic adsorption test was applied to assess the material selectivity towards heavy metals and support theoretical results. The kinetic adsorption study was analyzed through the pseudo-first and second-order kinetics, Elovich, and the intraparticle diffusion models. The theoretical analysis of the adsorption energies indicates that the adsorption of four metal ions on the Mg2O8Si3 surface is energetically favorable in all cases. The material displayed the following adsorption sequence: Cu2+ (59 mg g-1) > Zn2+(25 mg g-1) ≈ Co2+ (23 mg g-1) > Mn2+ (15 mg g-1). This knowledge can then be used to design and optimize low-cost silicate-based materials for effective heavy metal removal, contributing to efforts to address environmental pollution and protect public health.
URI
http://repositorio.udla.cl/xmlui/handle/udla/1742
Carrera:
Facultad de ingeniería y negocios
Colecciones:
  • Investigación
Derechos reservados Universidad de Las Américas
 

 

Listar

Todo RepositorioComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasEsta colecciónPor fecha de publicaciónAutoresTítulosMaterias

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso
Derechos reservados Universidad de Las Américas