Mostrar el registro sencillo del ítem
Pattern Recognition and Deep Learning Technologies, Enablers of Industry 4.0, and Their Role in Engineering Research
dc.contributor.author | Autor | Serey, Joel | |
dc.contributor.author | Autor | Alfaro, Miguel | |
dc.contributor.author | Autor | Fuertes, Guillermo | |
dc.contributor.author | Autor | Vargas, Manuel | |
dc.contributor.author | Autor | Durán, Claudia | |
dc.contributor.author | Autor | Ternero, Rodrigo | |
dc.contributor.author | Autor | Rivera, Ricardo | |
dc.contributor.author | Autor | Sabattinz, Jorge | |
dc.date.accessioned | Fecha ingreso | 2024-09-03T19:12:25Z | |
dc.date.available | Fecha disponible | 2024-09-03T19:12:25Z | |
dc.date.issued | Fecha publicación | 2023 | |
dc.identifier.citation | Referencia Bibliográfica | Symmetry, 15(2), 29 p. | |
dc.identifier.issn | ISSN | 2073-8994 | |
dc.identifier.uri | URL | http://repositorio.udla.cl/xmlui/handle/udla/1215 | |
dc.identifier.uri | URL | https://www.mdpi.com/journal/symmetry | |
dc.description.abstract | Resumen | The purpose of this study is to summarize the pattern recognition (PR) and deep learning (DL) artificial intelligence methods developed for the management of data in the last six years. The methodology used for the study of documents is a content analysis. For this study, 186 references are considered, from which 120 are selected for the literature review. First, a general introduction to artificial intelligence is presented, in which PR/DL methods are studied and their relevance to data management evaluated. Next, a literature review is provided of the most recent applications of PR/DL, and the capacity of these methods to process large volumes of data is evaluated. The analysis of the literature also reveals the main applications, challenges, approaches, advantages, and disadvantages of using these methods. Moreover, we discuss the main measurement instruments; the methodological contributions by study areas and research domain; and major databases, journals, and countries that contribute to the field of study. Finally, we identify emerging research trends, their limitations, and possible future research paths. | |
dc.format.extent | dc.format.extent | 29 páginas | |
dc.format.extent | dc.format.extent | 4.090Mb | |
dc.format.mimetype | dc.format.mimetype | ||
dc.language.iso | Lenguaje ISO | eng | |
dc.publisher | Editor | MDPI | |
dc.rights | Derechos | Creative Commons Attribution License (CC BY) | |
dc.source | Fuentes | Symmetry | |
dc.subject | Palabras Claves | Deep learning | |
dc.subject | Palabras Claves | Pattern recognition | |
dc.subject | Palabras Claves | Data management | |
dc.subject.lcsh | dc.subject.lcsh | Inteligencia artificial | |
dc.title | Título | Pattern Recognition and Deep Learning Technologies, Enablers of Industry 4.0, and Their Role in Engineering Research | |
dc.type | Tipo de Documento | Artículo de revisión | |
dc.udla.catalogador | dc.udla.catalogador | CBM | |
dc.udla.index | dc.udla.index | WoS | |
dc.udla.index | dc.udla.index | Science Citation Index Expanded | |
dc.udla.index | dc.udla.index | Scopus | |
dc.udla.index | dc.udla.index | Academic Search Ultimate | |
dc.udla.index | dc.udla.index | DOAJ | |
dc.udla.index | dc.udla.index | INSPEC | |
dc.udla.index | dc.udla.index | Technology Collection | |
dc.udla.index | dc.udla.index | Technology Collection | |
dc.identifier.doi | dc.identifier.doi | 10.3390/sym15020535 | |
dc.facultad | dc.facultad | Facultad de Arquitectura, Animación, Diseño y Construcción |