Show simple item record

dc.contributor.authorAuthorCarrazana-Escalona, Ramón.
dc.contributor.authorAuthorAndreu-Heredia, Adán.
dc.contributor.authorAuthorMoreno-Padilla, María.
dc.contributor.authorAuthorReyes del Paso, Gustavo A.
dc.contributor.authorAuthorSánchez-Hechavarría, Miguel E.
dc.contributor.authorAuthorMuñoz-Bustos, Gustavo.
dc.date.accessionedDate Accessioned2024-09-03T19:21:04Z
dc.date.availableDate Available2024-09-03T19:21:04Z
dc.date.issuedDate Issued2022
dc.identifier.citationReferencia BibliográficaJournal of Cardiovascular Development and Disease, 9(12), 14 p.
dc.identifier.issnISSN2308-3425
dc.identifier.uriURIhttp://repositorio.udla.cl/xmlui/handle/udla/1594
dc.identifier.uriURIhttps://www.mdpi.com/journal/jcdd
dc.description.abstractAbstractBackground: Predicting beat-to-beat blood pressure has several clinical applications. While most machine learning models focus on accuracy, it is necessary to build models that explain the relationships of hemodynamical parameters with blood pressure without sacrificing accuracy, especially during exercise. Objective: The aim of this study is to use the RuleFit model to measure the importance, interactions, and relationships among several parameters extracted from photoplethysmography (PPG) and electrocardiography (ECG) signals during a dynamic weight-bearing test (WBT) and to assess the accuracy and interpretability of the model results. Methods: RuleFit was applied to hemodynamical ECG and PPG parameters during rest and WBT in six healthy young subjects. The WBT involves holding a 500 g weight in the left hand for 2 min. Blood pressure is taken in the opposite arm before and during exercise thereof. Results: The root mean square error of the model residuals was 4.72 and 2.68 mmHg for systolic blood pressure and diastolic blood pressure, respectively, during rest and 4.59 and 4.01 mmHg, respectively, during the WBT. Furthermore, the blood pressure measurements appeared to be nonlinear, and interaction effects were observed. Moreover, blood pressure predictions based on PPG parameters showed a strong correlation with individual characteristics and responses to exercise. Conclusion: The RuleFit model is an excellent tool to study interactions among variables for predicting blood pressure. Compared to other models, the RuleFit model showed superior performance. RuleFit can be used for predicting and interpreting relationships among predictors extracted from PPG and ECG signals.
dc.format.extentdc.format.extent14 páginas
dc.format.extentdc.format.extent1.479Mb
dc.format.mimetypedc.format.mimetypePDF
dc.language.isoLanguage ISOeng
dc.publisherPublisherMDPI
dc.rightsRightsCreative Commons Attribution (CC BY)
dc.sourceSourcesJournal of Cardiovascular Development and Disease
dc.subjectSubjectBlood pressure prediction
dc.subjectSubjectRuleFit model
dc.subject.lcshdc.subject.lcshAnálisis de regresión
dc.subject.lcshdc.subject.lcshPresión sanguínea
dc.titleTitleBlood pressure prediction using ensemble rules during isometric sustained weight test
dc.typeDocument TypeArtículo
dc.udla.catalogadordc.udla.catalogadorCBM
dc.udla.indexdc.udla.indexWoS
dc.udla.indexdc.udla.indexScience Citation Index Expanded
dc.udla.indexdc.udla.indexScopus
dc.udla.indexdc.udla.indexDOAJ
dc.udla.indexdc.udla.indexEMBASE
dc.udla.indexdc.udla.indexHealth Research Premium Collection
dc.identifier.doidc.identifier.doi10.3390/jcdd9120440
dc.facultaddc.facultadFacultad de Salud y Ciencias Sociales


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record