Mostrar el registro sencillo del ítem

dc.contributor.authorAutorArias Poblete, Leónidas Eduardo.
dc.contributor.authorAutorÁlvarez-Arangua, Sebastián.
dc.contributor.authorAutorJerez-Mayorga, Daniel.
dc.contributor.authorAutorChamorro, Claudio
dc.contributor.authorAutorFerrero-Hernández, Paloma.
dc.contributor.authorAutorFerrari, Gerson
dc.contributor.authorAutorFarías-Valenzuela, Claudio.
dc.date.accessionedFecha ingreso2024-09-03T19:20:50Z
dc.date.availableFecha disponible2024-09-03T19:20:50Z
dc.date.issuedFecha publicación2023
dc.identifier.citationReferencia BibliográficaSport TK, 12, 20 p.
dc.identifier.issnISSN2254-4070
dc.identifier.uriURLhttp://repositorio.udla.cl/xmlui/handle/udla/1562
dc.identifier.uriURLhttps://revistas.um.es/sportk/index
dc.description.abstractResumenIntroduction: The tests used to classify older adults at risk of falls are questioned in literature. Tools from the field of artificial intelligence are an alternative to classify older adults more precisely. Objective: To identify the risk of falls in the elderly through electromyographic signals of the lower limb, using tools from the field of artificial intelligence. Methods: A descriptive study design was used. The unit of analysis was made up of 32 older adults (16 with and 16 without risk of falls). The electrical activity of the lower limb muscles was recorded during the functional walking gesture. The cycles obtained were divided into training and validation sets, and then from the amplitude variable, select attributes using the Weka software. Finally, the Support Vector Machines (SVM) classifier was implemented. Results: A classifier of two classes (elderly adults with and without risk of falls) based on SVM was built, whose performance was: Kappa index 0.97 (almost perfect agreement strength), sensitivity 97%, specificity 100%. Conclusions: The SVM artificial intelligence technique applied to the analysis of lower limb electromyographic signals during walking can be considered a precision tool of diagnostic, monitoring and follow-up for older adults with and without risk of falls.
dc.format.extentdc.format.extent20 páginas
dc.format.extentdc.format.extent4.482Mb
dc.format.mimetypedc.format.mimetypePDF
dc.language.isoLenguaje ISOeng
dc.publisherEditorUniversidad de Murcia
dc.sourceFuentesSport TK
dc.subjectPalabras ClavesFall risk
dc.subjectPalabras ClavesSupport vector machines
dc.subject.lcshdc.subject.lcshAncianos
dc.subject.lcshdc.subject.lcshMarcha
dc.subject.lcshdc.subject.lcshElectromiografía
dc.titleTítuloFall risk detection mechanism in the elderly, based on electromyographic signals, through the use of artificial intelligence
dc.typeTipo de DocumentoArtículo
dc.udla.catalogadordc.udla.catalogadorCBM
dc.udla.indexdc.udla.indexEmerging Sources Citation Index
dc.udla.indexdc.udla.indexScopus
dc.udla.indexdc.udla.indexDIALNET
dc.udla.indexdc.udla.indexDOAJ
dc.identifier.doidc.identifier.doi10.6018/sportk.575281
dc.facultaddc.facultadFacultad de Salud y Ciencias Sociales


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem