Show simple item record

dc.contributor.authorAuthorArias Poblete, Leónidas Eduardo.
dc.contributor.authorAuthorÁlvarez-Arangua, Sebastián.
dc.contributor.authorAuthorJerez-Mayorga, Daniel.
dc.contributor.authorAuthorChamorro, Claudio
dc.contributor.authorAuthorFerrero-Hernández, Paloma.
dc.contributor.authorAuthorFerrari, Gerson
dc.contributor.authorAuthorFarías-Valenzuela, Claudio.
dc.date.accessionedDate Accessioned2024-09-03T19:20:50Z
dc.date.availableDate Available2024-09-03T19:20:50Z
dc.date.issuedDate Issued2023
dc.identifier.citationReferencia BibliográficaSport TK, 12, 20 p.
dc.identifier.issnISSN2254-4070
dc.identifier.uriURIhttp://repositorio.udla.cl/xmlui/handle/udla/1562
dc.identifier.uriURIhttps://revistas.um.es/sportk/index
dc.description.abstractAbstractIntroduction: The tests used to classify older adults at risk of falls are questioned in literature. Tools from the field of artificial intelligence are an alternative to classify older adults more precisely. Objective: To identify the risk of falls in the elderly through electromyographic signals of the lower limb, using tools from the field of artificial intelligence. Methods: A descriptive study design was used. The unit of analysis was made up of 32 older adults (16 with and 16 without risk of falls). The electrical activity of the lower limb muscles was recorded during the functional walking gesture. The cycles obtained were divided into training and validation sets, and then from the amplitude variable, select attributes using the Weka software. Finally, the Support Vector Machines (SVM) classifier was implemented. Results: A classifier of two classes (elderly adults with and without risk of falls) based on SVM was built, whose performance was: Kappa index 0.97 (almost perfect agreement strength), sensitivity 97%, specificity 100%. Conclusions: The SVM artificial intelligence technique applied to the analysis of lower limb electromyographic signals during walking can be considered a precision tool of diagnostic, monitoring and follow-up for older adults with and without risk of falls.
dc.format.extentdc.format.extent20 páginas
dc.format.extentdc.format.extent4.482Mb
dc.format.mimetypedc.format.mimetypePDF
dc.language.isoLanguage ISOeng
dc.publisherPublisherUniversidad de Murcia
dc.sourceSourcesSport TK
dc.subjectSubjectFall risk
dc.subjectSubjectSupport vector machines
dc.subject.lcshdc.subject.lcshAncianos
dc.subject.lcshdc.subject.lcshMarcha
dc.subject.lcshdc.subject.lcshElectromiografía
dc.titleTitleFall risk detection mechanism in the elderly, based on electromyographic signals, through the use of artificial intelligence
dc.typeDocument TypeArtículo
dc.udla.catalogadordc.udla.catalogadorCBM
dc.udla.indexdc.udla.indexEmerging Sources Citation Index
dc.udla.indexdc.udla.indexScopus
dc.udla.indexdc.udla.indexDIALNET
dc.udla.indexdc.udla.indexDOAJ
dc.identifier.doidc.identifier.doi10.6018/sportk.575281
dc.facultaddc.facultadFacultad de Salud y Ciencias Sociales


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record