Mostrar el registro sencillo del ítem

dc.contributor.authorAutorSerey, Joel
dc.contributor.authorAutorQuezada, Luis
dc.contributor.authorAutorAlfaro, Miguel
dc.contributor.authorAutorFuertes, Guillermo
dc.contributor.authorAutorVargas, Manuel
dc.contributor.authorAutorTernero, Rodrigo
dc.contributor.authorAutorSabattin, Jorge
dc.contributor.authorAutorDuran, Claudia
dc.contributor.authorAutorGutierrez, Sebastian
dc.date.accessionedFecha ingreso2024-09-03T19:12:31Z
dc.date.availableFecha disponible2024-09-03T19:12:31Z
dc.date.issuedFecha publicación2021
dc.identifierdc.identifierMDPI
dc.identifier.citationReferencia BibliográficaSymmetry, 13(11), 30 p.
dc.identifier.issnISSN2073-8994
dc.identifier.uriURLhttp://repositorio.udla.cl/xmlui/handle/udla/1231
dc.identifier.uriURLhttps://www.mdpi.com/journal/symmetry
dc.description.abstractResumenThis study analyses the main challenges, trends, technological approaches, and artificial intelligence methods developed by new researchers and professionals in the field of machine learning, with an emphasis on the most outstanding and relevant works to date. This literature review evaluates the main methodological contributions of artificial intelligence through machine learning. The methodology used to study the documents was content analysis; the basic terminology of the study corresponds to machine learning, artificial intelligence, and big data between the years 2017 and 2021. For this study, we selected 181 references, of which 120 are part of the literature review. The conceptual framework includes 12 categories, four groups, and eight subgroups. The study of data management using AI methodologies presents symmetry in the four machine learning groups: supervised learning, unsupervised learning, semi-supervised learning, and reinforced learning. Furthermore, the artificial intelligence methods with more symmetry in all groups are artificial neural networks, Support Vector Machines, K-means, and Bayesian Methods. Finally, five research avenues are presented to improve the prediction of machine learning.
dc.format.extentdc.format.extent30 páginas
dc.format.extentdc.format.extent2.367Mb
dc.format.mimetypedc.format.mimetypePDF
dc.language.isoLenguaje ISOeng
dc.rightsDerechosCreative Commons Attribution License (CC BY)
dc.sourceFuentesSymmetry
dc.subjectPalabras ClavesData management
dc.subject.lcshdc.subject.lcshInteligencia artificial
dc.subject.lcshdc.subject.lcshBig data
dc.subject.lcshdc.subject.lcshAprendizaje de máquina
dc.titleTítuloArtificial intelligence methodologies for data management
dc.typeTipo de DocumentoArtículo de revisión
dc.udla.catalogadordc.udla.catalogadorCBM
dc.udla.indexdc.udla.indexWoS
dc.udla.indexdc.udla.indexScience Citation Index Expanded
dc.udla.indexdc.udla.indexScopus
dc.udla.indexdc.udla.indexAcademic Search Ultimate
dc.udla.indexdc.udla.indexDOAJ
dc.udla.indexdc.udla.indexINSPEC
dc.udla.indexdc.udla.indexTechnology Collection
dc.identifier.doidc.identifier.doi10.3390/sym13112040
dc.facultaddc.facultadFacultad de Arquitectura, Animación, Diseño y Construcción


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem