Mostrar el registro sencillo del ítem
Assessing the accuracy of google trends for predicting presidential elections: the case of Chile, 2006–2021
dc.contributor.author | Autor | Vergara-Perucich, Francisco | |
dc.date.accessioned | Fecha ingreso | 2024-09-03T19:12:28Z | |
dc.date.available | Fecha disponible | 2024-09-03T19:12:28Z | |
dc.date.issued | Fecha publicación | 2022 | |
dc.identifier.citation | Referencia Bibliográfica | Data, 7(11), 12 p. | |
dc.identifier.issn | ISSN | 2306-5729 | |
dc.identifier.uri | URL | http://repositorio.udla.cl/xmlui/handle/udla/1222 | |
dc.identifier.uri | URL | https://www.mdpi.com/journal/data | |
dc.description.abstract | Resumen | This article presents the results of reviewing the predictive capacity of Google Trends for national elections in Chile. The electoral results of the elections between Michelle Bachelet and Sebastián Piñera in 2006, Sebastián Piñera and Eduardo Frei in 2010, Michelle Bachelet and Evelyn Matthei in 2013, Sebastián Piñera and Alejandro Guillier in 2017, and Gabriel Boric and José Antonio Kast in 2021 were reviewed. The time series analyzed were organized on the basis of relative searches between the candidacies, assisted by R software, mainly with the gtrendsR and forecast libraries. With the series constructed, forecasts were made using the Auto Regressive Integrated Moving Average (ARIMA) technique to check the weight of one presidential option over the other. The ARIMA analyses were performed on 3 ways of organizing the data: the linear series, the series transformed by moving average, and the series transformed by Hodrick–Prescott. The results indicate that the method offers the optimal predictive ability. | |
dc.format.extent | dc.format.extent | 12 páginas | |
dc.format.extent | dc.format.extent | 1.713Mb | |
dc.format.mimetype | dc.format.mimetype | ||
dc.language.iso | Lenguaje ISO | eng | |
dc.publisher | Editor | MDPI | |
dc.rights | Derechos | Creative Commons Attribution License (CC BY) | |
dc.source | Fuentes | Data | |
dc.subject | Palabras Claves | ARIMA | |
dc.subject | Palabras Claves | Time series | |
dc.subject.lcsh | dc.subject.lcsh | Chile | |
dc.subject.lcsh | dc.subject.lcsh | Elecciones | |
dc.subject.lcsh | dc.subject.lcsh | Predicciones | |
dc.title | Título | Assessing the accuracy of google trends for predicting presidential elections: the case of Chile, 2006–2021 | |
dc.type | Tipo de Documento | Artículo | |
dc.udla.catalogador | dc.udla.catalogador | CBM | |
dc.udla.index | dc.udla.index | WoS | |
dc.udla.index | dc.udla.index | Emerging Sources Citation Index | |
dc.udla.index | dc.udla.index | Scopus | |
dc.udla.index | dc.udla.index | DOAJ | |
dc.udla.index | dc.udla.index | Advanced Technologies & Aerospace Database | |
dc.udla.index | dc.udla.index | CAB Abstracts | |
dc.udla.index | dc.udla.index | Compendex | |
dc.udla.index | dc.udla.index | INSPEC | |
dc.udla.index | dc.udla.index | Technology Collection | |
dc.identifier.doi | dc.identifier.doi | 10.3390/data7110143 | |
dc.facultad | dc.facultad | Facultad de Arquitectura, Animación, Diseño y Construcción |