Mostrar el registro sencillo del ítem

dc.contributor.authorAutorMaureira, Carlos
dc.contributor.authorAutorPinto, Hernán
dc.contributor.authorAutorYepes, Víctor
dc.contributor.authorAutorGarcía, José
dc.contributor.otherCarreraFacultad de ingeniería y negocioses
dc.date.accessionedFecha ingreso2022-05-27T18:08:38Z
dc.date.availableFecha disponible2022-05-27T18:08:38Z
dc.date.issuedFecha publicación2021-08-03
dc.identifier.citationReferencia BibliográficaIEEE Access, 110842-110879.
dc.identifier.issnISSN2169-3536
dc.identifier.uriURLhttp://repositorio.udla.cl/xmlui/handle/udla/1106
dc.identifier.uriURLhttps://ieeeaccess.ieee.org/
dc.description.abstractResumenThe Architecture, Engineering, and Construction (AEC) Industry is one of the most important productive sectors, hence also produce a high impact on the economic balances, societal stability, and global challenges in climate change. Regarding its adoption of technologies, applications and processes is also recognized by its status-quo, its slow innovation pace, and the conservative approaches. However, a new technological era - Industry 4.0 fueled by AI- is driving productive sectors in a highly pressurized global technological competition and sociopolitical landscape. In this paper, we develop an adaptive approach to mining text content in the literature research corpus related to the AEC and AI (AEC-AI) industries, in particular on its relation to technological processes and applications. We present a first stage approach to an adaptive assessment of AI algorithms, to form an integrative AI platform in the AEC industry, the AEC-AI industry 4.0. At this stage, a macroscopic adaptive method is deployed to characterize ‘‘Optimization,’’ a key term in AEC-AI industry, using a mixed methodology incorporating machine learning and classical evaluation process. Our results show that effective use of metadata, constrained search queries, and domain knowledge allows getting a macroscopic assessment of the target concept. This allows the extraction of a high-level mapping and conceptual structure characterization of the literature corpus. The results are comparable, at this level, to classical methodologies for the literature review. In addition, our method is designed for an adaptive assessment to incorporate further stages.es
dc.format.extentdc.format.extent38 páginas
dc.format.extentdc.format.extent6.141Mb
dc.format.mimetypedc.format.mimetypePDF
dc.language.isoLenguaje ISOenes
dc.publisherEditorInstitute of Electrical and Electronics Engineers Inc.
dc.sourceFuentesIEEE Access
dc.subjectPalabras ClavesEngineering and construction.es
dc.subjectPalabras ClavesAEC.es
dc.subjectPalabras ClavesLiterature corpus.es
dc.subjectPalabras ClavesOptimization algorithms.es
dc.subjectPalabras ClavesKnowledge mapping and structure.es
dc.subject.lcshdc.subject.lcshArchitecture.
dc.subject.lcshdc.subject.lcshArtificial intelligence.
dc.subject.lcshdc.subject.lcshMachine learning.
dc.titleTítuloTowards an AEC-AI Industry Optimization Algorithmic Knowledge Mapping: An Adaptive Methodology for Macroscopic Conceptual Analysises
dc.typeTipo de DocumentoArtículoes
dc.udla.catalogadordc.udla.catalogadorCBM
dc.udla.indexdc.udla.indexSCOPUS
dc.identifier.doidc.identifier.doihttps://doi.org/10.1109/ACCESS.2021.3102215
dc.udla.privacidaddc.udla.privacidadDocumento públicoes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem