Show simple item record

dc.contributor.authorAuthorMaureira, Carlos
dc.contributor.authorAuthorPinto, Hernán
dc.contributor.authorAuthorYepes, Víctor
dc.contributor.authorAuthorGarcía, José
dc.contributor.otherCareerFacultad de ingeniería y negocioses
dc.date.accessionedDate Accessioned2022-05-27T18:08:38Z
dc.date.availableDate Available2022-05-27T18:08:38Z
dc.date.issuedDate Issued2021-08-03
dc.identifier.citationReferencia BibliográficaIEEE Access, 110842-110879.
dc.identifier.issnISSN2169-3536
dc.identifier.uriURIhttp://repositorio.udla.cl/xmlui/handle/udla/1106
dc.identifier.uriURIhttps://ieeeaccess.ieee.org/
dc.description.abstractAbstractThe Architecture, Engineering, and Construction (AEC) Industry is one of the most important productive sectors, hence also produce a high impact on the economic balances, societal stability, and global challenges in climate change. Regarding its adoption of technologies, applications and processes is also recognized by its status-quo, its slow innovation pace, and the conservative approaches. However, a new technological era - Industry 4.0 fueled by AI- is driving productive sectors in a highly pressurized global technological competition and sociopolitical landscape. In this paper, we develop an adaptive approach to mining text content in the literature research corpus related to the AEC and AI (AEC-AI) industries, in particular on its relation to technological processes and applications. We present a first stage approach to an adaptive assessment of AI algorithms, to form an integrative AI platform in the AEC industry, the AEC-AI industry 4.0. At this stage, a macroscopic adaptive method is deployed to characterize ‘‘Optimization,’’ a key term in AEC-AI industry, using a mixed methodology incorporating machine learning and classical evaluation process. Our results show that effective use of metadata, constrained search queries, and domain knowledge allows getting a macroscopic assessment of the target concept. This allows the extraction of a high-level mapping and conceptual structure characterization of the literature corpus. The results are comparable, at this level, to classical methodologies for the literature review. In addition, our method is designed for an adaptive assessment to incorporate further stages.es
dc.format.extentdc.format.extent38 páginas
dc.format.extentdc.format.extent6.141Mb
dc.format.mimetypedc.format.mimetypePDF
dc.language.isoLanguage ISOenes
dc.publisherPublisherInstitute of Electrical and Electronics Engineers Inc.
dc.sourceSourcesIEEE Access
dc.subjectSubjectEngineering and construction.es
dc.subjectSubjectAEC.es
dc.subjectSubjectLiterature corpus.es
dc.subjectSubjectOptimization algorithms.es
dc.subjectSubjectKnowledge mapping and structure.es
dc.subject.lcshdc.subject.lcshArchitecture.
dc.subject.lcshdc.subject.lcshArtificial intelligence.
dc.subject.lcshdc.subject.lcshMachine learning.
dc.titleTitleTowards an AEC-AI Industry Optimization Algorithmic Knowledge Mapping: An Adaptive Methodology for Macroscopic Conceptual Analysises
dc.typeDocument TypeArtículoes
dc.udla.catalogadordc.udla.catalogadorCBM
dc.udla.indexdc.udla.indexSCOPUS
dc.identifier.doidc.identifier.doihttps://doi.org/10.1109/ACCESS.2021.3102215
dc.udla.privacidaddc.udla.privacidadDocumento públicoes


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record