Mostrar el registro sencillo del ítem

dc.contributor.authorAutorBarría-Sandoval, Claudia.
dc.contributor.authorAutorFerreira, Guillermo
dc.contributor.authorAutorBenz-Parra, Katherine.
dc.contributor.authorAutorLópez-Flores, Pablo.
dc.contributor.otherCarreraFacultad de salud, ciencias sociales y deporteses
dc.date.accessionedFecha ingreso2022-05-19T08:41:07Z
dc.date.availableFecha disponible2022-05-19T08:41:07Z
dc.date.issuedFecha publicación2021-04-29
dc.identifier.citationReferencia BibliográficaPLoS ONE, 16(4), 16 p.
dc.identifier.issnISSN1932-6203
dc.identifier.uriURLhttp://repositorio.udla.cl/xmlui/handle/udla/1012
dc.identifier.uriURLhttps://journals.plos.org/plosone/
dc.description.abstractResumenBackground Chile has become one of the countries most affected by COVID-19, a pandemic that has generated a large number of cases worldwide. If not detected and treated in time, COVID-19 can cause multi-organ failure and even death. Therefore, it is necessary to understand the behavior of the spread of COVID-19 as well as the projection of infections and deaths. This information is very relevant so that public health organizations can distribute financial resources efficiently and take appropriate containment measures. In this research, we compare different time series methodologies to predict the number of confirmed cases of and deaths from COVID-19 in Chile. Methods The methodology used in this research consisted of modeling cases of both confirmed diagnoses and deaths from COVID-19 in Chile using Autoregressive Integrated Moving Average (ARIMA henceforth) models, Exponential Smoothing techniques, and Poisson models for time-dependent count data. Additionally, we evaluated the accuracy of the predictions using a training set and a test set. Results The dataset used in this research indicated that the most appropriate model is the ARIMA time series model for predicting the number of confirmed COVID-19 cases, whereas for predicting the number of deaths from COVID-19 in Chile, the most suitable approach is the damped trend method. Conclusion The ARIMA models are an alternative to modeling the behavior of the spread of COVID-19; however, depending on the characteristics of the dataset, other methodologies can better predict the behavior of these records, for example, the Holt-Winter method implemented with time-dependent count data.es
dc.format.extentdc.format.extent16 páginas
dc.format.extentdc.format.extent3.420Mb
dc.format.mimetypedc.format.mimetypePDF
dc.language.isoLenguaje ISOenes
dc.publisherEditorPublic Library of Science.
dc.sourceFuentesUniversidad Nacional de Mar del Plata
dc.subject.meshdc.subject.meshCOVID-19 (Enfermedad)
dc.titleTítuloPrediction of confirmed cases of and deaths caused by COVID-19 in Chile through time series techniques: A comparative studyes
dc.typeTipo de DocumentoArtículoes
dc.udla.catalogadordc.udla.catalogadorCBM
dc.udla.indexdc.udla.indexSCOPUS
dc.identifier.doidc.identifier.doihttps://doi.org/10.1371/journal.pone.0245414
dc.udla.privacidaddc.udla.privacidadDocumento públicoes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem