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A B S T R A C T

Protecting natural ecosystems requires monitoring approaches that work as early warning
systems to avoid degradation and protect biodiversity. However, separating forest disturbance
causes in change-detection pipelines is challenging due to the complex interplay of multiple
drivers affecting vegetation. This study aims to detect deforestation in highly heterogeneous
ecosystems. We used Landsat NDVI time-series data for testing three unsupervised change
detection methods: (1) the non-parametric phenological anomaly detection (npphen), (2) the
continuous change detection and classification (CCDC), and (3) the pruned exact linear time
(PELT) algorithms. We used visual interpretation of Google Earth Pro high-resolution data
(<10 m) to depict deforestation, and natural-induced changes, like forest browning and fires,
evaluating the performance of the unsupervised methods. Additionally, a Random Forest
model trained with the outputs from detection algorithms together with elevation and radar
vegetation index data were utilised to depict deforestation in a second step. While PELT slightly
outperformed other methods for tracking general vegetation changes, with overall accuracies
(OA) ranging from 0.78 to 0.99, depending on the vegetation type, it also showed the slowest
deforestation tracking response. CCDC presented the fastest response and an OA between 0.78
and 0.95. Additionally, we observed a mean OA of only 0.47 when separating deforestation
from other changes using only the unsupervised models. On the other hand, deforestation
was accurately detected (OA = 0.93; kappa = 0.83) when using CCDC outputs within a
secondary supervised classification, agreeing with selected citizen-based complaints from the
Environmental Superintendence. The relatively fast response in deforestation tracking using
CCDC makes it a viable alternative for near real-time monitoring. Commonly used unsupervised
detection methods may be coupled with supervised techniques to depict vegetation change
sources robustly. This application constitutes a step forward for managing and monitoring
vegetation areas in highly complex and dynamic landscapes, like Mediterranean ecosystems.

∗ Corresponding author at: Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Sede Providencia, Santiago, Chile.
E-mail address: ifuentes@udla.cl (I. Fuentes).
vailable online 30 April 2024
352-9385/© 2024 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.rsase.2024.101210
Received 6 February 2024; Received in revised form 20 March 2024; Accepted 24 April 2024

https://www.elsevier.com/locate/rsase
https://www.elsevier.com/locate/rsase
mailto:ifuentes@udla.cl
https://doi.org/10.1016/j.rsase.2024.101210
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rsase.2024.101210&domain=pdf
https://doi.org/10.1016/j.rsase.2024.101210


Remote Sensing Applications: Society and Environment 35 (2024) 101210I. Fuentes et al.

e
c
a
c
m

e
f
w
T
o
c
r
e
i
o
e

w
d
e
v
o
l

o
n
a
E
W
w
2
a
h

2
s
e
d
a
L
o
s
o
p
p

c
t
w
t
p
a
h
l
d
o
v

1. Introduction

Monitoring forest ecosystems is crucial for addressing global change and improving environmental monitoring to mitigate
cosystem impairment (Parr et al., 2003; Kofinas, 2009; Bakker and Ritts, 2018; Dong et al., 2019). Forests are essential
omponents of the biosphere functioning and deliver relevant ecosystem services, including the provision and regulation of water
nd carbon (Bengtsson et al., 2000; Nadrowski et al., 2010; Masek et al., 2015; Song et al., 2016; Löf et al., 2019), nutrient
ycling (Attiwill and Adams, 1993; Longo et al., 2020), air purification (Song et al., 2016; Bottalico et al., 2017), biodiversity
aintenance (de Oliveira Roque et al., 2018), climate regulation (Figueroa and Pasten, 2015), and recreation (Sánchez et al., 2021).

Deforestation, a global environmental issue, is causing the reduction and shrinking of forest areas (Ribeiro et al., 2011; Hansen
t al., 2013; Keenan et al., 2015; Payn et al., 2015; Leblois et al., 2017; Ritchie and Roser, 2021). Deforestation implies changes from
orests to other land use classes, which humans or other agents can cause (FAO, 2022). Deforestation is driven by various factors,
ith urban expansion and agricultural activities being prominent drivers in many regions (DeFries et al., 2010; Leblois et al., 2017).
he conversion of forested areas into urban landscapes or agricultural land leads to habitat loss, fragmentation, and the disruption
f ecological processes (Ribeiro et al., 2011; Zemp et al., 2017). These anthropogenic activities significantly affect biodiversity
onservation, ecosystem functioning, and sustainable land use (Barlow et al., 2016; Rocha-Santos et al., 2020). While extensive
esearch has focused on deforestation in the Amazon rainforest due to its profound impact on global climate and biodiversity (Zemp
t al., 2017; Ferrante and Fearnside, 2020; Silva Junior et al., 2021), it is essential to recognise the ecological, economic, and social
mportance of forests in other regions (Myers et al., 2000; Hamilton and Friess, 2018). However, there are also natural-based drivers
f forest and vegetation loss, like fire regimes and browning due to severe and prolonged droughts (Garreaud et al., 2020; Miranda
t al., 2020; Smith-Ramírez et al., 2022).

At the landscape level, severe water deficits over the last decades (Garreaud et al., 2020; Fuentes et al., 2022a), and global
arming (Boisier et al., 2016) have led to forest browning (Miranda et al., 2020) and tree mortality in some regions with prolonged
roughts (Matskovsky et al., 2021). Likewise, extensive forest fires are increasing in frequency due to climate change, affecting forest
cosystems and plantations in large regions of the globe (Castillo et al., 2020; Canadell et al., 2021; Mansoor et al., 2022), reducing
egetation health and vigour. Since all these processes share a decline in vegetation, disentangling deforestation from other causes
f forest degradation becomes challenging (Sebald et al., 2021). However, it is essential for policy-making and management at the
andscape level.

Given the urgency in delivering new monitoring strategies to track forest changes, there has been an overtaking devel-
pment of new advances and technologies that allow the continuous monitoring of forested areas to assess forest changes
ationwide rapidly (Hansen et al., 2016). However, synoptic and regular data are needed to achieve a large-scale monitoring
pproach (Danielsen et al., 2009). Hence, remote sensing data have gained increasing popularity for automatic change detection of
arth’s changes as it allows the periodic monitoring of the surface characteristics (Fuentes et al., 2019; Japitana and Burce, 2019;
eiss et al., 2020; Fuentes et al., 2022b, 2024). For example, optical satellites with multispectral instruments evaluate changes
ithin the visible and near-infrared wavelength range of the electromagnetic spectrum (Thakur et al., 2020; McAllister et al.,
022), while radar satellites use microwave wavelengths (Karthikeyan et al., 2020), offering the advantage of cloud penetration
nd monitoring during all seasons (Kerr et al., 2001; Filipponi, 2019). Machine learning, segmentation, or statistical approaches
ave been commonly used to assess changes and tendencies in remotely sensed time series data (Lary et al., 2016; Yin et al., 2018).

Different methods employ distinct architectures to trace breaks or changes in forest time series data (Zhu, 2017; Housman et al.,
018; Asokan and Anitha, 2019). In many cases, changes must demonstrate continuity/consistency within the time series and not
imply represent a single anomaly, which could be caused by clouds, cloud shadows, floods, or artefacts in satellite scenes (Puhm
t al., 2020). Detecting consecutive outliers can ensure the presence of a structural break in the time series, but this often leads to a
elay in precisely defining the break, hindering real-time change detection (Verbesselt et al., 2011). Structural breaks can be defined
s statistically significant changes in time series, implying changes in trend, mean, or variance (Muthuramu and Maheswari, 2019;
oginova and Mann, 2022), and may result in the temporal segmentation of a time series (Pasquarella et al., 2022). Alternatively,
ther change detection methodologies may utilise phenological curves that combine multi-annual data into day-of-the-year (DOY)
eries to detect outliers based on observations within the same season, considering historical observations of a particular month
r week instead of consecutive ordinal observations. These approaches require prior knowledge of vegetation behaviour during a
eriod of non-disturbance and seasonal climatic conditions (Estay and Chávez, 2018; Zeng et al., 2020), especially as interannual
henological variation changes between vegetation types (Lopatin, 2023) and thus can affect the stability of the approach.

Several algorithms for land change detection have been tested in deforestation studies. Cai et al. (2023) applied the continuous
hange detection and classification (CCDC) algorithm to track forest changes with high accuracies. Schultz et al. (2016) applied
he break detection for satellite time series data (BFAST) in combination with different vegetation indices to track deforestation
ith robust results. Similarly, Schultz et al. (2015) evaluated error sources in deforestation detection using BFAST, highlighting

he necessity of fine-tuning the algorithm in some areas. LandTrendR is another temporal segmentation algorithm that has proven
roficient in tracking annual forest disturbances (Cohen et al., 2018; Pasquarella et al., 2022). The vegetation change tracker (VCT)
lgorithm has also been developed to track forest disturbances with annual or biannual satellite data (Huang et al., 2010) and
as been tested for deforestation in the Yunnan province of China, with accuracies of up to 82.7% (Pang et al., 2013). However,
ittle consensus has been found in the results of all these change detection methods. Cohen et al. (2017) compared different change
etection algorithms considering the full range of forest disturbance magnitudes and found disagreement on the spatial disturbance
ccurrences between algorithms. While most unsupervised change detection alternatives have proven accurate in depicting overall
2

egetation changes (Zhu and Woodcock, 2014; Estay and Chávez, 2018; Wu et al., 2020), less attention has been paid to assessing
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Table 1
Proportion of natural vegetation types and plantations in the study region.

Class Area (km2) Coverage (%)

Deciduous forest 9,276.5 11.9
Sclerophyllous forest 29,198.9 37.4
Thorny forest 15,525.1 19.9
Altitude grassland 2,684.2 3.4
Altitude low shrubs 11,423.4 14.6
Sclerophyllous shrubs 2,474.4 3.2
Thorny shrubs 1,555.3 2.0
Plantationsa 6,168.0 7.9
Bareland 5,621.4 7.2

a Natural vegetation corresponds to potential habitat distributions. Therefore,
coverage including plantations should exceed 100%.

if their sole use is proficient for separating deforestation from other sources of forest decay. As a consequence, Cohen et al. (2018)
underscored the necessity of a secondary classification to improve disturbance detection.

Different studies have highlighted the challenge of distinguishing deforestation from other causes of forest deterioration. For
instance, when studying forest cover changes from satellite imagery, Hansen et al. (2013) refer to the ‘‘proximate’’ causes of
disturbances. Other studies directly assess the contribution of climate- and human-based variables in forest productivity or net
primary productivity (Chen et al., 2021). Likewise, approaches involving field observations are also used to assess the contribution
of drivers of change (Redlich et al., 2022), although they may be difficult to scale up to the landscape level. However, incipient citizen
science alternatives have been implemented to address this scaling issue (Arcanjo et al., 2016). For example, Sebald et al. (2021)
incorporated the landscape context by estimating the cumulative disturbed forest area surrounding forest patches in a secondary
classification to identify causal agents of disturbance, resulting in an improved depiction of real deforestation. However, few
examples of these human- and natural-based drives of vegetation change remain, and robust methods are still needed to operationally
depict deforestation from other drivers of forest change at multiple spatial scales.

The primary objective of this study is to disentangle deforestation from other forest degradation causes with the aim of detecting
near real-time human-induced deforestation using satellite data, including time series. To achieve this, we seek (a) to evaluate
and compare three architecturally different algorithms of change detection in forest monitoring, discussing their advantages and
challenges; (b) to apply a secondary classification to distinguish deforestation from other forest disturbances, such as large-scale fires
and droughts, utilising the outputs of the change detection algorithm and ancillary data; (c) to compare deforestation results against
governmental inspection requests raised by the community, evaluating the appropriateness of these requests and the temporal gap
between them. We will use a large portion of central Chile as a study site to achieve these objectives. Central Chile has undergone
severe droughts and fires over the last decade, presenting alarming tree mortality increases in a complex landscape of forestry and
agriculture mosaics (Garreaud et al., 2020; Miranda et al., 2020; Fuentes et al., 2021).

2. Materials and methods

2.1. Study region

To address our research goals, we selected central Chile between the Valparaiso and El Maule regions (−32.3◦–−36.5◦ S;
ig. 1), an area with an extent of about 78,000 km2. Forests in this region are important, as they have been acknowledged as
ne of the world’s biodiversity hotspots (Myers et al., 2000). This region is mainly dominated by Mediterranean climate types
Csa and Csb) according to the Köppen–Geiger climate classification (Sarricolea et al., 2017; Beck et al., 2018) and has historically
xperienced important land cover changes (Montoya-Tangarife et al., 2017; Miranda et al., 2017; Fuentes et al., 2021). Moreover,
hese forests face multiple threats, including urban and peri-urban expansion, agriculture expansion, and the establishment of exotic
lantations (Manuschevich, 2018). Consequently, according to the International Union of Conservation of Nature (IUCN) (Alaniz
t al., 2016), most of these ecosystems have been classified as threatened. Furthermore, these ecosystems have experienced severe
nd prolonged drought conditions, resulting in "browning" events (Garreaud et al., 2020; Miranda et al., 2020). Additionally, the
egion has witnessed large-scale wildfire events over the past decade (Smith-Ramírez et al., 2022).

Vegetation formation classes in the study region and their extent are in Table 1. Forests in the region encompass various
egetation types (Cowling et al., 1996) predominantly dominated by sclerophyllous species. Thorny scrublands, mainly characterised
y Vachellia caven, are also present, along with deciduous forests of Nothofagus species in southern areas with higher precipita-
ion (Donoso and Donoso, 2007; Salas et al., 2016). Sclerophyllous forest formations are characterised by evergreen trees with hard
eaves that reduce water loss. These traits make the chlorophyll vegetation resilient to water stress and drought (Yin and Bauerle,
017). Plantations and other land cover classes overlap these categories (Zhao et al., 2016). This study includes forest categories
rom Table 1 but also incorporates plantation in the analysis.

.2. Datasets and pre-processing

We used the Landsat constellation, including Level 2 Collection 2 tier 1 scenes from TM, ETM+, and OLI/TIRS sensors for Landsat
, 7, 8, and 9 (USGS, 2022). These data included 8,804 scenes from 2000-01-01 to 2022-06-01. We merged the different collections
3

sing cloud and shadow masks based on the QA_PIXEL band information of the CFMASK algorithm (Foga et al., 2017).
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Fig. 1. Study region and its main characteristics in terms of elevation, mean annual rainfall and temperatures, and vegetation formation classes.

We depicted the normalised difference vegetation index (NDVI) (Rouse et al., 1973) of the image collections using the red and
near-infrared bands of images. We further used the 2014 land cover map developed by Zhao et al. (2016) in the post-processing
step to limit changes detected in forests, plantations, or shrubland areas, avoiding agricultural lands that can present artificial
structural changes due to management. Additionally, we included elevation data from the Multi-Error-Removed Improved-Terrain
digital elevation model, which was included as a covariate in the secondary classification step alongside the slope of the terrain
calculated from it.

We also used calibrated and ortho-corrected Ground Range Detected scenes from synthetic aperture radar Sentinel 1 satellites
from February 2016 to July 2022. These were filtered based on the Interferometric Wide Swath (IWS) mode using a descending orbit
direction, since it allowed to maximise the number of scenes. The back-scatter intensity from dual-polarimetric Sentinel-1 images
was used to calculate the Radar Vegetation Index (Mandal et al., 2020) using:

𝑅𝑉 𝐼 =
4𝜎0𝑉 𝐻

0 0
(1)
4

𝜎𝑉 𝐻 + 𝜎𝑉 𝑉
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being 𝜎0𝑉 𝐻 and 𝜎0𝑉 𝑉 the dual cross polarisation (vertical transmit/horizontal receive) and single co-polarisation (vertical trans-
mit/vertical receive) backscatter intensity bands, respectively. This collection was used to obtain some covariates in the secondary
classification step.

We used Google Earth Engine (Gorelick et al., 2017) and the Data Cube Chile (https://datacubechile.cl/) to acquire and process
the data. Subsequent methodologies and analyses were carried out using Python ≥ 3.7.

2.3. Unsupervised change detection

We selected three algorithms belonging to structurally different approaches to evaluate methodologies to trace structural changes
in heterogeneous and complex forest ecosystems in Central Chile. We tested: (1) a probabilistic approach based on the phenological
characterisation of vegetation considering a bivariate time series based on day-of-the-year data; (2) a temporal segmentation method
assuming the decomposition of time series in intra-annual, inter-annual, and structural changes by evaluating the deviation of
observations and predictions based on ordinary least squares regressions. This method uses bivariate/multivariate data containing
as reference the date; and (3) a temporal segmentation based on the optimisation of a cost function, where the cost is additive in the
segmented blocks and requiring a univariate/multivariate time series, relaxing the need for temporal references for the change-point
detection.

The outputs of these algorithms correspond to change dates and magnitudes. The change magnitudes were calculated as the
difference between average NDVI values within stable periods adjacent to the detected changes.

Phenological characterisation: the non-parametric phenological cycle and anomaly detection (npphen) algorithm
The first algorithm implies using multi-year phenological stages in forests to characterise the behaviour of phenological curves.

We used the methodology defined by the ‘npphen’ R-package (Estay and Chávez, 2018). This methodology uses multi-annual
information and orders them to day-of-the-year (DOY) to have a single phenological curve (or a pseudo-DOY in the case of the
southern hemisphere). This curve is fitted using Kernel Density Estimation (KDE). This allows us to depict a generic phenological
response per pixel as:

𝑓 (𝑥;𝐻) = 1
𝑛

𝑛
∑

𝑖=1
𝐾𝐻 (𝑥 −𝑋𝑖) (2)

here X corresponds to a time series containing paired values of vegetation indices and the DOY, being 𝑋𝑖 the pair of values for the
𝑡ℎ observation, n corresponds to the number of observations, which can be calculated as the multiplication of the number of annual
henological cycles by the observations per cycle, x is a generic point in the paired values, H is the bandwidth 2 × 2 array, K is

the kernel, in this case corresponding to a Gaussian kernel of size defined by H (Wand and Jones, 1994), being f(x) the bivariate
ensity function of X.

Npphen can lead to anomaly detection of present values when compared to the historical trend of that time of the year
e.g., weekly) using a probabilistic approach based on the following:

𝐴𝑖 = 𝑉 𝐼𝑜𝑏𝑠 − 𝑉 𝐼𝑒𝑥𝑝 (3)

eing 𝐴𝑖 the anomaly for the 𝑖𝑡ℎ DOY, 𝑉 𝐼𝑜𝑏𝑠 the observed vegetation index and 𝑉 𝐼𝑒𝑥𝑝 the expected vegetation index for that DOY.
We fitted npphen for the period 2000–2015 using the Landsat collection to set each pixel’s historical phenological response,

onsequently estimating anomaly probabilities from 2016 (i.e., see Section 2.4). We defined a structural break in the time series
hen at least five consecutive negative anomalies exceeded two standard deviations of the "training" data. We did this assuming

hat negative changes or perturbations in forest and shrublands structure cause a decline of NDVI values (Hudak and Wessman,
000) and to avoid single anomalies that may be caused by artefacts that could obscure the structural break detection. By using
pphen, only the initial change detected is considered, as anomalies in the time series persist until the signal aligns with a pattern
imilar to the undisturbed period.

emporal segmentation: the continuous change detection and classification (CCDC) algorithm
The second method for defining structural breaks is the Continuous Change Detection and Classification (CCDC) algorithm,

riginally defined to trace land cover changes (Zhu and Woodcock, 2014). The algorithm is used in time series composed by
easonality, trends, and breaks, estimating coefficients through ordinary least squares (OLS) and fitting harmonic functions as:

�̂�(𝑖, 𝑥)𝑂𝐿𝑆 = 𝑎0,𝑖 + 𝑎1,𝑖𝑐𝑜𝑠(
2𝜋
𝑇

𝑥) + 𝑏1,𝑖𝑠𝑖𝑛(
2𝜋
𝑇

𝑥) + 𝑐1,𝑖𝑥 (4)

being 𝑥, constrained to the following boundaries:

𝜏∗𝑘−1 < 𝑥 ≤ 𝜏∗𝑘 (5)

where �̂�(𝑖, 𝑥)𝑂𝐿𝑆 is the estimated value of the time series for the 𝑥𝑡ℎ day of the year; 𝑖 correspond to the dimension of the time series
evaluated (band of images); 𝑇 is the number of days per year; 𝑎0,𝑖; 𝑎1,𝑖, 𝑏1,𝑖; and 𝑐1,𝑖 are the overall (mean), intra-annual change
(seasonal), and inter-annual (trend) change coefficients for the 𝑖 band, respectively; and 𝜏∗𝑘 are the 𝑘th break points.

CCDC can use single or multiband images for change detection and seeks to detect breaks by evaluating the difference between
observations and predictions, normalised by the root mean square error (RMSE) during a defined time window, as:
5
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𝑛 × 𝑅𝑀𝑆𝐸𝑖
> 1(𝑧 consecutive times) (6)

where 𝑘 is the number of bands used, 𝑛 is a factor that multiplies the RMSE for the selection of the break based on the assumption
of model prediction ranges, defined as 3 in this case, and 𝑧 represents consecutive observations where errors exceed 𝑛 times the

MSE to trace the break. We used the Google Earth Engine implementation, and tested several chi-square probability thresholds,
etting 𝑧 to 5 and a chi-square probability threshold to 0.9 to improve the change detection (Supplementary materials; Figure S1).

emporal segmentation: linearly penalised segmentation (PELT)
We selected the Pruned Exact Linear Time (PELT) algorithm as the third methodology, which is a linearly penalised segmentation

mplemented in the ’Ruptures’ Python library (Truong et al., 2020). PELT efficiently deals with an unknown number of breaks in
ach time series. In a time series defined by 𝑦1∶𝑛 of size 𝑛, and 𝑚 change points at 𝜏1∶𝑚 dates, structural breaks can be identified by
inimising the following (Wambui et al., 2015):

𝑚+1
∑

𝑖=1
[𝑙(𝑦(𝜏𝑖−1+1)∶𝜏𝑖 ) + 𝛽] (7)

eing 𝑙 the cost function for the 𝑖th segment, and 𝛽 corresponds to a penalty to minimise over-fitting.
PELT mixes partitioning and pruning to achieve computational efficiency by applying the optimal solution 𝐹 (𝑛) of Eq. (7):

𝐹 (𝑛) = min
𝜏𝑚

{𝐹 (𝜏𝑚) + 𝑙(𝑦(𝜏𝑚+1)∶𝑛)} (8)

being the inner minimisation 𝐹 (𝜏𝑚):

𝐹 (𝜏𝑚) = min
𝜏|𝜏𝑚

{
𝑚
∑

𝑖=1
[𝑙(𝑦(𝜏𝑖−1+1)∶𝜏𝑖 ) + 𝛽]} (9)

We used a radial basis function as model input, setting the minimum distance between change points to 3, the subsample to
, and the penalty to 30 since it allowed us to empirically improve the change detection performance through accuracy metrics
Supplementary materials; Figure S1).

.4. Algorithm performance and timeliness analysis

We used the Global Forest Watch (GFW) map of deforestation records (https://www.globalforestwatch.org/) to initially select
otential areas of forest change between 2016 and 2022. We then corroborated the validation sites by visually interpreting Google
arth Pro images. We selected a total of 382 validation sites, from which 142 corresponded to human-based deforestation and
47 to other changes, i.e., 91 polygons associated with severe drought conditions during the summer of 2019–2020 that led to
egetation "browning" in the studied region as reported by Miranda et al. (2020) and 56 polygons were selected as affected by
ires. We also selected 93 sites with stable time series where no changes occurred. We used pixel-based data for the analyses, thus
aving several time series per site (i.e., 23,053 pixel-based time series in total). The selected time frame of analysis was chosen
o minimise error in methods needing historical data before validation, as npphen, and because of the higher frequency of high
esolution images available in Google Earth, which facilitates the selection of reference polygons for validation. Five examples of
on-deforested (above) and deforested (below) reference polygons and background reflectance images for the years 2016 and 2021
re shown in Fig. 2. For the reader’s convenience, Sentinel 2 images are displayed instead of Landsat images.

We evaluated the performance of the three algorithms in terms of consumer’s accuracy (CA), producer’s accuracy (PA), F1-score,
verall accuracy (OA), and Cohen’s Kappa coefficient as suggested by Olofsson et al. (2014), being PA estimated as the ratio between
orrectly classified pixels in each category and the number of reference pixels within that category, while CA are correctly classified
ixels in each category divided by the number of pixels classified as such within that category. Additionally, OA is calculated as:

𝑂𝐴 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑛 + 𝑡𝑛 + 𝑓𝑝
(10)

being tp, tn, fp, fn true positive, true negative, false positive, and false negative observations, respectively. Kappa coefficient is
estimated using:

𝑘𝑎𝑝𝑝𝑎 =
𝑃𝑜 − 𝑃𝑒
1 − 𝑃𝑒

(11)

being 𝑃𝑜 the probability of actual agreement and 𝑃𝑒 the probability of a random agreement. Lastly, the F1-score is calculated using:

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(12)

being precision and recall estimated as:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝 (13)
6

𝑡𝑝 + 𝑓𝑝
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Remote Sensing Applications: Society and Environment 35 (2024) 101210I. Fuentes et al.
Fig. 2. Reference polygons used in this study (above) and examples of non-deforested (below left) and deforested (below right) forest ecosystems between 2016
and 2022. Black polygons depict validation polygons. A, B, and C show sites without human- and natural-based changes, while D was classified as affected by
drought due to the browning observed, and E was classified as affected by fires in 2017 through high-resolution satellite images from Google Earth Pro (spatial
resolution of less than 10 m).

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
(14)

and implying the ability of algorithms to avoid false positives and to identify positives, respectively.
We finally assessed the model performances of:

1. all deforested (human-made) areas against stable (undisturbed) forest areas;
2. all deforested (human-made) areas against stable and natural-made changes (stable+droughts+fire);
3. same as comparisons (1) and (2), but separating natural forest and plantation deforested areas.

We divided the analysis into these sections to assess the ability of the unsupervised change detection algorithms to depict only
deforestation (human-based changes) across vegetation types and natural forest alterations.

Additionally, the rate of algorithm deforestation detection was evaluated in 15 randomly selected reference polygons including
both, native vegetation and plantations. The reference date of deforestation was selected by visually interpreting the first Landsat
image where deforestation was evident. The temporal lag of deforestation detection was calculated as the difference between the
7
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Fig. 3. Schema depicting the workflow of the methodology for distinguishing deforestation from other natural-induced changes.

algorithm detection date and the reference date. This aims to depict not only the models’ accuracy but also their stability and lag
time of response to achieve their accuracy.

2.5. Disentangling deforestation from other natural changes

A supervised classification approach was used to depict deforestation from natural changes in the landscape. To achieve that, we
utilised the best of the three unsupervised change detection algorithms in terms of accuracy and fast lag response. We masked out
pixels with positive change magnitudes as we assumed that all deforestation and natural alteration would decrease NDVI values.
We then used the spatial patterns of the binary detection and its magnitudes to assess if the changes originated from deforestation
or natural drivers.

We assumed that vegetation changes associated with droughts and fires lead to broad and heterogeneous spatial patterns across
the landscape. Contrarily, anthropic deforestation, like logging and urban expansion, is expected to have large change magnitude
with smaller and homogeneous spatial extents. Therefore, we used the gray level co-occurrence matrix (GLCM) (Haralick et al.,
1973) approach to generate textural features from the magnitude of changes using square kernel neighbourhoods of 15 × 15 pixels.
Likewise, we calculated the neighbourhood variations using the standard deviation of the change dates and magnitudes within a
square kernel of 50 × 50 pixels. The selected kernel dimensions were chosen because they yielded the best results compared with
other configurations explored. We used the entropy, contrast, inverse difference moment (IDM), angular second moment (ASM),
and sum average (SA) layer metrics from the GLCM analysis. Entropy signifies the degree of complexity in the spatial distribution
of pixels, contrast reflects the local intensity variations between neighbouring pixels, IDM illustrates the local homogeneity, ASM
measures the uniformity or smoothness of an image, while SA represents the average intensity of the sum of pixel pairs. We combined
the GLCM data with change magnitudes and the standard deviation layers derived from the outputs of the selected unsupervised
algorithm as predictors for the supervised classification (Fig. 3). Additionally, slope and elevation were also included as predictors,
along with the interquartile range and the 25th and 75th quartiles of RVI images as RVI has been recognised as an alternative for
monitoring vegetation growth (Nasirzadehdizaji et al., 2019), and the interquartile range represents a measure of growth variability.
8
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Table 2
Performances of the three unsupervised change detection algorithms, with metrics estimated between deforested and stable reference classes and between
deforested and all other classes (stable, drought-affected, and fire-affected). The comparison was performed on every time series (combined) and for native
vegetation and plantations separately. Bold numbers depict local maxima in the models.

Forest Algorithm OAa PA CA kappa f1 OA PA CA kappa f1

Stable v/s deforested All v/s deforested

Native
𝑛𝑝𝑝ℎ𝑒𝑛 0.83 0.83 0.83 0.67 0.84 0.39 0.57 0.53 0.05 0.24
𝐶𝐶𝐷𝐶 0.78 0.78 0.78 0.56 0.81 0.27 0.50 0.50 0.03 0.23
𝑃𝐸𝐿𝑇 0.78 0.78 0.79 0.57 0.76 0.55 0.60 0.54 0.09 0.27

Plantation
𝑛𝑝𝑝ℎ𝑒𝑛 0.96 0.97 0.88 0.85 0.97 0.61 0.64 0.71 0.27 0.68
𝐶𝐶𝐷𝐶 0.95 0.93 0.97 0.87 0.98 0.53 0.58 0.69 0.14 0.64
𝑃𝐸𝐿𝑇 0.99 0.98 0.96 0.95 0.99 0.55 0.59 0.73 0.18 0.66

Combined
𝑛𝑝𝑝ℎ𝑒𝑛 0.89 0.90 0.87 0.76 0.92 0.48 0.61 0.61 0.15 0.46
𝐶𝐶𝐷𝐶 0.88 0.86 0.86 0.71 0.92 0.37 0.55 0.57 0.06 0.41
𝑃𝐸𝐿𝑇 0.90 0.91 0.86 0.77 0.93 0.55 0.66 0.63 0.21 0.49

a OA: Overall accuracy; PA: Producer’s accuracy (mean of classes); CA: Consumer’s accuracy (mean of classes).

The reference polygons were split into a 10% for validation (2283 pixels), while a 10-fold cross-validation was applied on the
remaining 90% polygons. We used the Random Forest algorithm with 150 trees and an out-of-bag fraction of 0.5 to train a pixel-
based classifier to depict deforestation from other changes and to differentiate forest disturbance sources since these parameters
resulted in a good performance using a grid search based on the validation subset.

2.6. Independent verification via citizen science

Finally, we used the citizen-based complaints from the Superintendencia del Medio Ambiente, the organism from the Ministry of
Environment in charge of monitoring the natural resources, to filter 16 in-situ descriptions containing the words ‘‘*forest’’, ‘‘fell*’’,
‘‘cut*down’’, and ‘‘sclerophyllous’’. Complaints were also filtered based on forests, shrublands, and plantation land cover classes
from the Zhao et al. (2016) map. These complaints (Supplementary materials, Table S1) were compared with deforestation maps,
and the dates of the change detection were used as an independent verification of the method.

3. Results

3.1. Performance of unsupervised change detection methods

Table 2 presents the performance of different change detection algorithms used between stable (i.e., no changes between 2016–
2022) and deforested classes and between all other classes (stable, fire, and drought affected) and deforested classes. The algorithms
show robust performances when comparing stable and deforested classes, with OA ranging from 0.78 to 0.99 and kappa coefficients
from 0.56 to 0.95. Under native forest types, npphen outperforms other algorithms, but under plantations, PELT has the best
performance. Likewise, when combining native vegetation and plantations, PELT slightly outperforms other algorithms. Overall,
we observed that all algorithms perform less accurately on native forests than on plantations, given the vegetation heterogeneity. In
general, commission errors are slightly higher than omission errors, which is reflected in slightly lower CA (CA = 100 - commission
errors) compared to PA (PA = 100 - omission errors).

We depicted very low accuracies when comparing deforestation with the rest of the categories (including natural-based changes),
with OA and kappa values ranging from 0.27 to 0.61 and from 0.03 to 0.27, respectively. However, again plantations show a better
performance than native forest types. In this case, large errors are caused, among others, by natural-induced changes detected by
algorithms other than deforestation, implying that further processing is required to distinguish between human- and natural-induced
vegetation changes.

Fig. 4 shows the averaged NDVI time series for non-deforested (left) and deforested (right) examples with their corresponding
change detection by the tree algorithms (vertical lines). PELT and CCDC algorithms depicted a structural change in the summer of
2020 associated with drought in Fig. 4D. All three algorithms detect a fire-based change in example E from Fig. 4 during 2017.

Deforested examples (right-column panel of Fig. 4) are correctly identified by PELT and CCDC algorithms in all cases. On the
other hand, npphen detects structural changes in four of the five examples. Example I is associated with a change in vegetation
in the period used for training the algorithm (2000–2016). In this example, a growing forest can be observed between 2008 and
2014, being the previous years characterised by early-stage forest vegetation. This results in the spread of NDVI low-probabilities
observed in the phenological curve of example I (Supplementary materials, Figure S3), affecting the change detection.

Fig. 5 shows spatiotemporal maps of structural breaks since 2016, applying a 100–200 m buffer around the example polygons. The
npphen algorithm tracked deforestation changes, except for example I, incurring in more false negatives. Poorly defined boundaries
for phenological curves (Figure S3 associated with vegetation changes between 2000 and 2016, i.e. training period in npphen) limit
phenology-based algorithms’ structural breaks detection capacities, preventing structural breaks tracking in Fig. 5 example I. On the
other hand, CCDC and PELT changes are correctly delimited.

Changes in non-deforested examples only occur within example D (Fig. 5) using PELT, corresponding to a drought event (Fig. 4).
Meanwhile, example E, corresponding to a fire event, was identified by all unsupervised algorithms. CCDC detected changes in sparse
9
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Fig. 4. Non-deforested (left) and deforested (right) averaged NDVI pixels sampled from reference examples. Structural changes detected using npphen, CCDC,
and PELT algorithms are also presented (vertical lines). A, B, and C polygons were classified as stable, while D and E were classified as affected by drought and
fires, respectively. F-J polygons are classified as deforested.

3.2. Latency between reference deforestation and change detection

The temporal lag between reference deforestation dates and average change detection dates is shown in Fig. 6. Although PELT
leads to the best cumulative change detection, it also presents the most extended temporal lag (in percentage) between average
change detection and reference deforestation dates. While PELT deforestation dates in Fig. 4 are accurately tracked, its cost function
optimisation results in several months of delay in tracking changes, making it more suitable for offline applications. In contrast,
CCDC demonstrates the fastest detection response, with over 50% of pixel changes detected within the first two months after the
reference deforestation date. This lagged response may also be adjusted by modifying 𝑧 in Eq. (5). CCDC is followed by npphen in
the latency between reference deforestation dates and the algorithm detection dates. Thus, the latency of CCDC and npphen makes
them suitable for near real-time applications. Given the high performance and fast response of CCDC to depict forest changes, we
selected it for the secondary classification step.

3.3. Disentangling deforestation and performance

Fig. 7 shows the date and magnitude of general changes across central Chile. The landscape changes depicted distinct patterns
of natural- and human-based changes. For example, the above-zoomed area represents natural changes associated with browning
and fire. Here, the changes are widespread with heterogeneous shapes and low change intensities. Contrary, the under-zoomed area
depicts deforestation or human-made alteration in the landscape. These changes have unnatural homogeneous shapes, like squares
and rectangles, and often high change magnitudes.

Change and magnitude distribution differences between disturbed classes are in Fig. 8. A bimodal distribution of change
magnitudes is observed (upper panel) and a large dispersion (middle panel) of change dates that increases during the spring
10
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Fig. 5. Spatio-temporal maps of last break detections using three approaches for non-deforested (left) and deforested (right) polygon examples. Letters A-J
correspond to non-deforested/deforested example polygons as shown in Fig. 2. Red polygons depict the selected validation areas. Non-deforested A, B, and C
polygons were classified as stable, while D and E were classified as affected by drought and fires, respectively. Land cover maps correspond to Zhao et al. (2016).

Fig. 6. Temporal lag between reference deforestation and average detected changes using unsupervised algorithms.

and summer seasons. Distinctively larger frequencies were depicted in the summer of 2017, associated with large fire events, and
between 2019 and 2020, associated with severe drought conditions (Supplementary materials, Figure S4). We also observed that
fires presented the strongest change magnitudes (i.e., lower negative values) followed by deforestation events, while drought events
led to higher values. Also, change dates for drought are very limited to specific periods of time, while deforestation and fires showed
more spread alteration throughout the study period.

Table 3 show the classification performance using the Random Forest model for disentangling deforestation from other classes and
for determining the source of forest disturbance. Results depict a substantial agreement between reference and predicted classes.
11
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Fig. 7. Change detection magnitudes (left) and dates (right) in central Chile using PELT. Changes correspond to the last break detected on the time series. Two
zoomed-in areas are also depicted.

Table 3
Deforestation classification performance using the supervisor Random Forest classifier.

Stage OA PA CA kappa f1 OA PA CA kappa f1

Deforested v/s nondeforested Change type

Calibration 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Validation 0.93 0.92 0.92 0.83 0.92 0.92 0.93 0.92 0.88 0.92

Deforestation is tracked correctly, with similar values for consumer and producer accuracies and a kappa of 0.83 in validation.
Additionally, the disturbance sources are also tracked quite correctly, with a kappa value of 0.88 in validation.

The classification results of zoomed-in examples from Fig. 7 are in Fig. 9, showing the changes caused only by deforestation
(human-made). False colour images from years 2016 and 2022 are included to evaluate differences, and the mean and standard
deviation of deforestation changes depicted from the 10-fold repetitions show stable estimation (i.e., low variations). Likewise,
different classes of disturbance sources for the zoomed-in examples evaluated are in Fig. 10.

3.4. Evaluation using citizen complains

Fig. 11 depicts the comparison between user complaints and temporal segmentation algorithms. From the 16 filtered complaints,
only 11 presented deforestation events detected (i.e., 69%). However, some of these complaints do not show significant changes in
the associated NDVI time series, and in other cases changes are subtle. Furthermore, the methodology often detected forest changes
before the occurrence of citizen complaints (Supplementary materials, Figure S5), hence improving the detection in time and space
from the status quo. Statistically, comparing the complaints where deforestation was detected, the algorithm detection occurs on
average 94 days before the complaint is made.

4. Discussion

4.1. Performance of the unsupervised forest change detection algorithms

The PELT temporal segmentation algorithm yielded slightly higher overall accuracies than other algorithms when depicting
deforestation against stable vegetation. PELT stands out for its flexibility, as it allows for the adoption of different linear and non-
linear models to reduce the cost functions, hence eliminating the need for prior knowledge of seasonal vegetation patterns (Wambui
et al., 2015). While PELT is computationally efficient, flexible (Killick et al., 2012), and has demonstrated faster and more consistent
performance than visual assessments of breaks in oceanographic wave height time series (Killick et al., 2011), it also demonstrated
to work offline, leading to a large lag between deforestation and its detection. On the other hand, changes that occurred during the
phenological characterisation using the Landsat collection (2000–2015) affected the results obtained using npphen. By relying on the
phenological curve characterization through a period of non-disturbance, npphen leads to the detection of continuous anomalies after
a change occurs, making it difficult to detect subsequent changes. These factors reduce its versatility. Nevertheless, these drawbacks
12
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Fig. 8. Distribution of changes based on magnitudes and dates. Histograms of change magnitudes and dates for the entire study region are in the above and
middle panels, respectively. The distribution of change magnitudes and dates for reference polygons based on change classes are in the lower panel.

can be mitigated by employing a time series with minimal disturbance during training and selecting only the first change. We make
sure to use undisturbed polygons between 2000 and 2015 for evaluating deforestation between 2016 and 2022, except for one
reference polygon used for evaluation, which experienced changes during the "training" period (Fig. 4I). This approach has also
proven helpful in detecting ecosystems with high dynamic seasonality, such as the blooming desert in northern Chile (Chávez et al.,
2019). Unlike npphen, which utilises non-parametric methods and does not assume any predefined phenological cycle shape (Estay
and Chávez, 2018), CCDC assumes harmonic/seasonal cycles with different orders among its components (Zhu and Woodcock,
2014). CCDC leads to an overall good performance in the unsupervised change detection and led to the faster deforestation detection
response, which implies it may be used for near-real deforestation applications.

The use of different optical satellite datasets can yield varied results due to differences in temporal resolution, the time span of
available data, spatial resolution, and the robustness of cloud and shadow detection methods. Notably, we observed noise in the
data collections, mainly caused by cloud and shadow detection errors, that increased deviations in the time series (Baret et al.,
2007; Griffiths et al., 2020). This, together with artefacts in satellite images such as those caused by the failure of the scan line
corrector in Landsat 7, can cause missed structural breaks, impacting npphen and CCDC, which rely on anomaly deviations or
deviations of residuals to track significant changes. The frequency of satellite image acquisition also may play a role in timely
change detection (Fuentes et al., 2019), and it should be fully considered when aiming for continuous environmental monitoring.
For instance, Zhu and Woodcock (2014) highlights the influence of observation frequency on the speed of change detection using
temporal segmentation algorithms, emphasising the importance of frequent clear-sky observations. However, there is a dearth of
13
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Fig. 9. Deforestation changes tracked. Two zoomed-in regions are depicted with mean false colour (NIR-red-green) images for the years 2016 and 2022. Mean
deforestation changes and standard deviation deforestation changes from the 10-fold validation are also shown.

studies investigating the effects of observation frequency on change detection. Lunetta et al. (2004) explored frequencies of 3, 7, and
10 years using Landsat images to track land cover changes, finding that a frequency of at least 3 years is needed to appropriately
detect changes in North Carolina, USA. However, further research is needed to transfer these findings to other site conditions and
satellites. Harmonising and combining Landsat and Sentinel 2 datasets can potentially increase observation frequency (Claverie
et al., 2018), and their effects on change detection should be further examined.

4.2. Disentangling human- and natural-induced forest changes

As discussed previously, optical data solely is often insufficient to determine the nature of the detected changes (Bannari et al.,
1995). While NDVI values can serve as a proxy for vegetation presence or greenness (Chapungu et al., 2020), the NDVI values
cannot directly provide information about the cause or driver of the disturbances. Therefore, a significant change in the NDVI time
series can be caused by varying natural- and human-made drivers (Jackson and Huete, 1991). For instance, we found widespread
systematic disturbances throughout central Chile during the summer of 2020, which resulted from browning and prolonged drought
conditions (Fig. 8) (Miranda et al., 2020, 2022). The systematic breaks identified during the summer of 2020 were associated with a
‘‘browning’’ process affecting native vegetation. This indicates a systematic decline in vegetation health or vegetation death, which
can be observed through changes in NDVI or productivity measures (Koulgi et al., 2019). Other studies have observed a similar
phenomenon in other areas of the globe (Hao et al., 2022).

We identified deforestation changes by leveraging spatial and temporal occurrence patterns of the overall unsupervised change
detection. We used, in this case, a secondary supervised classification approach as suggested by Cohen et al. (2018) when
studying the potential extrapolation of change detection methods, incorporating neighbourhood data and textural analysis of change
detections and magnitudes as covariates to disentangle deforestation from other forest disturbances. We also included topographic
and radar data to integrate structural changes in the vegetation canopies as additional information aiding the identification of
deforestation (Reiche et al., 2018). However, further research is needed to explore the importance of covariates in the deforestation
detection.

4.3. Policy-making and management

Overall, we found that in various cases the remotely sensed change detection approach significantly reduced the response time
compared to citizen complaints managed by the Environmental Superintendence (Fig. 9). This further highlights the potential for
prompt action if automated methodologies like this one are integrated into governance schemes. Depicting change detection at
the landscape level is crucial for monitoring unauthorised activities, such as logging and specific urban expansions, reducing the
environmental impacts and the expenses associated with in-situ monitoring and control by the government. However, it is essential
to approach public complaints with caution. While some complaints contain specific information related to deforestation (Table S1,
Supplementary materials), they often lack information about the nature, magnitude, or extent of the disturbance. Moreover, the
georeferencing of complaints can be inaccurately provided by users, leading to cases of low NDVI values, making categorising the
locations as forests or closed shrublands challenging. Therefore, while these complaint datasets can serve as a reference for further
investigation and comparison, they should not be considered as real validation sources.
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Fig. 10. Deforestation changes tracked. Two zoomed-in regions are depicted with mean false colour (NIR-red-green) images for the years 2016 and 2022. Mean
deforestation changes and standard deviation deforestation changes from the 10-fold validation are also shown.

5. Conclusions

Forest ecosystems were monitored using phenological characterisation and temporal segmentation algorithms. While the
temporal segmentation through PELT slightly outperformed other methods for deforestation tracking using NDVI calculated from the
Landsat dataset, it also led to a high latency between deforestation and its detection. CCDC leads to a generally good performance
and a fast deforestation detection response. We observed the general tendencies of the three methods to depict forest decline due
to severe drought conditions and large fires. This implies that the separation of these events from human-based interventions is
challenging. Disentangling deforestation from other changes through a secondary classification using neighbourhood statistics and
textural analysis applied to the detected changes, together with topographic and radar data, led to robust results. Additionally,
deforestation detection was assertive when evaluated against citizen complaints raised to the Environmental Superintendence,
leading, on average, to a faster detection (94 days before than complaints). Further research is needed to assess other alternatives
depicting human-based forest disturbances through, for example, deep learning methods.
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Fig. 11. Different series for locations of citizen-based complaints raised to the Environmental Superintendence and deforestation detection results.
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