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A B S T R A C T

Actual evapotranspiration (AET) is a key variable in the global water balance, driving agricultural production
and ecosystem health. It is a complex hydrologic process that depends on vegetation, climate, and available
water conditions. Different moderate resolution global AET models have been developed to quantify water
resources at large scales. In this work we evaluate five of these products, including MODIS, PML, SSEBop,
TerraClimate, and a Synthesis AET using point and catchment-scale datasets based on flux towers. We also
contrast water balance changes with total water storage (TWS) products. These comparisons cover different
radiation and precipitation regimes over catchments around the world and along a strong climatic gradient
in north-central Chile. We rank the models, contrast TWS datasets, and study differences related to scale
in validation and the effect of rainfall and radiation on simulated values. Additionally, we use a Budyko
framework to evaluate the AET products in terms of their agreement with expected water budgets. At different
evaluation scales, AET estimates and observations agreed reasonably well, with the largest mean R2 of about 0.7
and errors of approximately 15% of the magnitude of the observed variables. MODIS and Synthesis AET had the
highest R2 at the point (0.62) and at the catchment scales (0.71 and 0.59 for regional and global catchments),
respectively, but were closely followed by PML. PML and TerraClimate led to the lowest magnitude errors at the
point (RMSE = 0.78 mm day−1) and catchment scales (mean RMSE = 1.5 mm day−1), respectively. The rainfall
gradient is reflected in a performance gradient. PML, MODIS, and TerraClimate gave consistent behaviour
based on the Budyko curve, with a few arid catchments exceeding the water limit. The major conclusion
is that remotely sensed AET outperforms flux tower AET extrapolation for water balance calculations at the
catchment scale, which means that errors in satellite-based AET products tend to cancel out at larger spatial
scales, which makes them viable alternatives for regional water balance studies. However, flux data integrated
into AET models, such as the FluxCom model, leads to the lowest errors. The assimilation and downscaling of
Gravity Recovery and Climate Experiment (GRACE) into the Global Land Data Assimilation System (GLDAS)
leads to an improvement in regional results compared with other TWS products.
1. Introduction

Remote sensing has increased in popularity given its potential for
monitoring surface land processes (Palmer et al., 2015; Fuentes et al.,
2019; Weiss et al., 2020; Avtar et al., 2021). However, while gridded
data can have advantages over point observations by providing continu-
ous spatial estimates, errors derived from the estimates can accumulate
if considered at scales that exceed pixel dimensions (Li and Shao, 2010;
Worqlul et al., 2014). Similarly, if land processes quantified in different
remote sensing products have biases related to different land features or
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climates, and different land features and climates characterise the land
aggregations under consideration (e.g., catchments, regions, countries),
errors may again accumulate or cancel out at these scales (Senay et al.,
2020).

Actual evapotranspiration (AET) based on remote sensing has a long
development history, resulting in a range of methodologies for quantifi-
cation (King et al., 2011; Ershadi et al., 2013; Zhang et al., 2019), and
different validation techniques (Guerschman et al., 2009; Sriwongsi-
tanon et al., 2020; Elnashar et al., 2021). Thus, multiple AET products
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have been developed that can quantify hydrologic resources (Mu et al.,
2011; Zhang et al., 2019; Senay et al., 2020). However, quantifying
AET is not a trivial task, since it involves complex processes that
include meteorological, soil water availability, and vegetation growth
characteristics (Ershadi et al., 2013). Moreover, the dominant hydro-
logic processes are spatio temporal variables in the landscape, which
at regional scales can cause quantification differences. Elnashar et al.
(2021), aware of the fact that different AET models perform differently
for different types of land cover and climate classes, sought to create
an ensemble of different AET products to reduce uncertainties across
landscapes.

Most validation techniques to evaluate the performance of AET
products make use of point observations such as eddy covariance tow-
ers or through known vegetation crop coefficients and the calculation of
reference evapotranspiration (Allen et al., 1998; Elnashar et al., 2021).
One of the challenges of validation from point observations is that
complex processes such as AET cannot be fully extrapolated to larger
scales exactly because of land heterogeneity and different processes
that take place at catchment or regional scales compared to local
observations (Ershadi et al., 2013; Strong and Elliott, 2017). Moreover,
in large regions, the sparse spatial distribution of monitoring points
in climatic and hydrological monitoring networks and discontinuities
in recordings (Hund et al., 2016) hinder potential validation. These
factors not only limit the potential for validation of AET, but also
the development of gridded products derived from observational data,
which may justify the use of global modelled remote sensing datasets.

On the other hand, from the methodologies used for catchment
validation of AET, the water balance is probably the most widely
used (Guerschman et al., 2009; Senay et al., 2011; Sriwongsitanon
et al., 2020). Validation at this scale might be of interest, especially
if climate variations occur in studied regions. However, a further
difficulty relates to the sources of data to evaluate different components
of the water balance at catchment or regional scales. The first problem
relates to the common assumption that there is no change in storage
over time (Guerschman et al., 2009; Jung et al., 2010; King et al.,
2011; Buzacott and Vervoort, 2021). The assumption of no change in
the stored water in a catchment is rarely met on the short and medium
term, and in some cases not even in the long term. More specifically,
this assumption depends on the evaluation time scale, climate aridity,
vegetation coverage, and snowfall (Han et al., 2020). This means that
for analyses at a monthly scale, different approaches are required.

Different modelled or observed datasets, such as the WaterGAP
Global Hydrology Model (Döll et al., 2003) or the use of the NASA
Gravity Recovery and Climate Experiment (GRACE) satellites (Tapley
et al., 2004; Kornfeld et al., 2019) can be used to close the water bal-
ance by allowing the calculation of total water storage (TWS) changes.
Nevertheless, these alternatives also present challenges, particularly
those caused by the low resolution of total water storage anomalies,
such as from GRACE (∼3 degree). Sriwongsitanon et al. (2020), for
instance, applied GRACE data to validate AET products in Thailand.
However, Thailand is strongly dominated by tropical savanna climates,
with high annual rainfall and relatively low regional variability (Beck
et al., 2018). Therefore, such evaluations must be further applied to
a different range of climates to better understand how these products
perform under different conditions.

Given the above, the shape of Chile, which crosses many lati-
tudes, and the relatively small size and self-contained characteristics
of Chilean catchments, it becomes an interesting region to consider.
This is further bolstered by the strong radiation and rainfall gradients
that provide different climate and hydrological characteristics (Bonilla
and Vidal, 2011; Carretier et al., 2018). Additionally, from a national
perspective, there are contrasting views on the dominant processes
that are leading to increasing climate variability and water scarcity
in central-southern Chile (Garreaud et al., 2020; Fuentes et al., 2021;
Madariaga et al., 2021). To estimate water balances under increasing
2

climate variability and water scarcity remains a challenging task con-
sidering the limited available data sources. Given the different AET
and TWS remote sensing sources, it would be valuable to contrast how
these perform under different climate conditions, such as those condi-
tioned by latitudinal gradients. Furthermore, the contrasting Chilean
hydrological conditions and the evaluation of AET products can be
representative of a wide range of different climates, from desert to
temperate oceanic (Sarricolea et al., 2017; Beck et al., 2018), which
can be further compared with other global catchments. This evaluation,
which combines validation methods at the point and catchment scales,
can lead to improvements in water balance calculations by reducing
errors associated with the AET component.

The objective of this study is to evaluate different moderate resolu-
tion global AET products in a latitudinal gradient of north and central
Chile and contrasting these results with other catchments globally. In
addition, it will consider a catchment scale validation schema through
the use of the water balances based on dynamic storage changes
derived from different sources, and through point observations from
flux towers. The latitudinal gradient and global catchments are selected
to account for different climate and hydrologic variations that may
lead to performance differences among AET products. On the basis of
these results, a discussion of implications, challenges, and scientific
gaps arising from AET products is provided.

2. Materials and methods

2.1. Study region and datasets

This study was carried out at two different scales: (1) at the regional
scale, Northern and Central Chile between parallels −38.5◦ and −17◦

(Fig. 1). (2) At the global scale, different regions including North and
South America, Africa, Europe, and Australia.

The selected Chilean region represents a latitudinal gradient of
increasing rainfall and decreasing radiation to the south; however, it
also has a temperature gradient increasing east to west caused by the
Andes mountain range. The northern landscapes are characterised by
arid conditions and desert climates, which transition to semi-arid and
Mediterranean climates in central Chile, up to oceanic climates in the
southern extreme of the study region, with annual rainfalls exceeding
2000 mm (Sarricolea et al., 2017).

Additionally, another series of catchments that lie along a latitudi-
nal gradient were included in the global analysis. This consisted of 9
catchments along the Australian east coast (Supplementary materials;
Figure S1). These catchments predominantly encompass temperate and
arid Köppen climate types (Beck et al., 2018). However, there is no
latitudinal rainfall gradient across these catchments.

2.2. Total water storage

Monthly TWS and their anomalies were obtained from the Global
Land Data Assimilation System (GLDAS) version 2.2 and from the
Water – Global Assessment and Prognosis (WaterGAP) v2.2 model.
The GLDAS 2.2 model is a land surface model that assimilates GRACE
into the Catchment land surface model (Koster et al., 2000). It uses
an ensemble Kalman smoother to downscale GRACE and has proven
significant regional improvements compared with GRACE given the
low spatial resolution of the latter (Li et al., 2019). WaterGAP cor-
responds to a global hydrological model that accounts for water use,
flow and storage. It combines three model components that consider
water consumption, the linking model Groundwater-Surface Water Use,
and the WaterGAP Global Hydrology Model (Müller Schmied et al.,
2021). Additionally, as a reference for comparison, TWS anomalies
from the Centre for Space Research (CSR) National Aeronautics and
Space Administration (NASA) Gravity Recovery and Climate Exper-
iment (GRACE) and from the NASA Gravity Recovery and Climate
Experiment Follow-up (GRACE-FO) RL06 Mascons with all corrections
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Fig. 1. Regional study area and the main characteristics in terms of elevation, mean annual rainfall, temperatures, and solar incoming radiation.
Table 1
Data sets used and main characteristics.

Dataset Spatial resolution Temporal resolution Operation period Access source

MOD16A2 500 m 8-days 2001–now https://developers.google.com/earth-engine/datasets
PML AET 500 m 8-days 2002/07–now https://developers.google.com/earth-engine/datasets
Synthesis AET 1 km monthly 1982–2019 https://developers.google.com/earth-engine/datasets
TerraClimate ∼4 km monthly 1958–now https://developers.google.com/earth-engine/datasets
SSEBop 1 km monthly 2003–now https://earlywarning.usgs.gov/fews/product/460
GRACE/GRACE-FO TWS 0.25◦ monthly 2002/04–now http://www2.csr.utexas.edu/grace
GLDAS 2.2 ∼0.25◦ monthly 2003/02–now https://developers.google.com/earth-engine/datasets
WaterGAP v2.2d ∼0.5◦ monthly 1980–2016 https://doi.pangaea.de/10.1594/PANGAEA.918447
CHIRPS ∼5 km daily 1981–now https://developers.google.com/earth-engine/datasets
GPM ∼10 km 3-h/monthly 2000/06–now https://developers.google.com/earth-engine/datasets
CR2MET ∼5 km monthly 1979–2020 https://www.cr2.cl/datos-productos-grillados/
ERA5-Land ∼10 km hourly 1981–now https://developers.google.com/earth-engine/datasets
National discharge – daily/monthly Variable http://www.dga.cl
GRDC data – daily/monthly Variable https://www.bafg.de/GRDC/
FluxCom 0.25◦ daily/monthly 2001–2015 https://www.fluxcom.org/
Fluxnet – daily/monthly Variable https://fluxnet.org/
applied (version 02) (Save et al., 2016; Save, 2020) were also evalu-
ated. These were masked using the CSR land mask from the University
of Texas to minimise leakage along the coastline. However, GRACE is
used with caution in this case and only as a reference given the small
size of studied catchments and the low spatial resolution of Mascons,
which may lead to TWS errors. The datasets used were sampled using
the filtered catchments to obtain a series of monthly averaged TWS and
TWS anomalies per catchment (Table 1).

2.3. Discharge, catchment selection, and flux data

At the regional scale, monthly discharge data and catchment bound-
aries were obtained from the Water Resources Directorate (Dirección
General de Aguas, http://www.dga.cl). The catchments were filtered
based on the presence of a hydrometric station close to the river outlet
and a catchment extent that was large enough to contain at least a
single WaterGAP data pixel (∼0.5◦). This resulted in a selection of only
11 catchments (Fig. 2).

At the global scale, 51 catchments from the Global Runoff Data
Centre (GRDC; https://www.bafg.de/GRDC/) were filtered based on
the availability of discharge recordings between the years 2000 and
2022 and areas ranging from 4130 km2 to 789,162 km2 (Fig. 3 above).
Boundaries from these catchments were also obtained from the GRDC
dataset (GRDC, 2011). Discharges were aggregated to monthly before
further analysis.
3

Furthermore, to evaluate point-scale validation, 27 flux towers from
Fluxnet CC-BY-4.0 (Pastorello et al., 2020) were selected. These were
selected because they were within the selected catchments or, in the
case of South America, they were located in neighbouring countries of
the regional subset (Fig. 3 below). From these, actual evapotranspira-
tion was aggregated to monthly values. Additionally, monthly gridded
latent heat from the FluxCom dataset was transformed into evap-
otranspiration and compared against other evapotranspiration prod-
ucts. FluxCom combines eddy covariance towers from the Fluxnet
network with remote sensing and meteorological data through machine
learning (Jung et al., 2019).

2.4. Rainfall and radiation data

Gridded daily rainfall data from the Climate Hazards Group In-
fraRed Precipitation with Station data (CHIRPS) at 0.05◦ resolution was
obtained. CHIRPS combines infrared rainfall with in-situ station data to
produce a good quality rainfall dataset (Funk et al., 2015), which in
large regions has strong correlations with observed data, but in some
desert climates it has shown to perform poorly (Fuentes et al., 2022),
which was further evaluated in this study. Daily rainfall data was
aggregated to monthly and averaged to the catchment scale. Addition-
ally, CR2MET gridded rainfall was also obtained (https://www.cr2.cl/).
This dataset contains monthly rainfall limited to the Chilean extent,
which is based on a statistical regionalisation of ERA interim rainfall

https://developers.google.com/earth-engine/datasets
https://developers.google.com/earth-engine/datasets
https://developers.google.com/earth-engine/datasets
https://developers.google.com/earth-engine/datasets
https://earlywarning.usgs.gov/fews/product/460
http://www2.csr.utexas.edu/grace
https://developers.google.com/earth-engine/datasets
https://doi.pangaea.de/10.1594/PANGAEA.918447
https://developers.google.com/earth-engine/datasets
https://developers.google.com/earth-engine/datasets
https://www.cr2.cl/datos-productos-grillados/
https://developers.google.com/earth-engine/datasets
http://www.dga.cl
https://www.bafg.de/GRDC/
https://www.fluxcom.org/
https://fluxnet.org/
http://www.dga.cl
https://www.bafg.de/GRDC/
https://www.cr2.cl/


Journal of Hydrology 628 (2024) 130477I. Fuentes et al.
Fig. 2. Chilean catchments filtered in the study region.
data. Both datasets were compared with meteorological station data
to select the best performing in terms of temporal characterisation
(Pearson correlation) and magnitude of errors (root mean squared
errors) (Fig. 4). Additionally, rainfall from meteorological stations was
averaged by catchment (Fig. 4, right column) and also used as input in
the analysis.

Given the better performance of CR2MET, which results in slightly
higher correlations and lower errors (root mean squared errors; RMSE),
it was selected for further analysis at the regional scale. At the global
scale, CHIRPS was used as the main rainfall input. However, since
CHIRPS coverage is limited at the northern latitudes, it was com-
plemented for those latitudes with monthly rainfall estimates at 0.1◦
4

resolution from the Global Precipitation Measurement (GPM) satellite
mission version 6. This dataset applies the Integrated Multi-satellitE
Retrievals for GPM (IMERG) algorithm. IMERG processes satellite mi-
crowave precipitation, gauge data, and microwave-calibrated infrared
(IR) satellite estimates, using monthly observations that lead to
research-level estimates (Huffman et al., 2015).

Mean daily downward surface solar radiation was obtained from
the fifth-generation European Centre for Medium-Range Weather Fore-
casts (ECMWF) climate Reanalysis over land (ERA5-Land) collection.
This contains grids of global hourly weather and hydrologic data at
approximately 10 km (Muñoz-Sabater et al., 2021). The dataset was
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Fig. 3. Global GRDC catchments (below) and flux towers (above) selected for additional validation and comparison. Blue points are stations that were used in the calibration of
some of the AET products evaluated in this study, while red points were not. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
Fig. 4. Gridded rainfall comparison between CHIRPS and CR2MET and catchment aggregation of meteorological stations (right). RMSE is in mm month−1.
aggregated to daily values and subsequently averaged between the
years 1990 and 2020.

2.5. Actual evapotranspiration (AET)

In this study, five different actual evapotranspiration products were
evaluated. These were selected because they correspond to publicly
available global datasets, some of them identified as the ‘‘state of the
art’’ evapotranspiration algorithms. These include:

MODIS AET (MOD16A2)
The MOD16A2 product is based on the Penman Monteith evapo-

transpiration equation (Mu et al., 2011). This product integrates land
5

cover (MOD12Q1), albedo (MCD43), leaf area index (LAI), and fraction
of photosynthetically active radiation (MOD15A2), and reanalysis of
meteorological data (Mu et al., 2013) to obtain 8-day actual and
potential evapotranspiration at a resolution of 500 m. This product was
originally validated using 46 flux towers.

PML AET
The Penman–Monteith–Leuning Evapotranspiration V2 (PML_V2)

consists of the sum of three components: the evaporation from the
soil, the transpiration of vegetation and the evaporation of rainfall
intercepted by vegetation (Zhang et al., 2019). PML uses the Penman–
Monteith equation, but is improved by Leuning et al. (2008) by mod-
ifying the surface conductance formulation considering soil water and
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canopy losses, and using a biophysical canopy conductance model that
couples gross primary production with canopy transpiration (Gan et al.,
2018). Unlike other products, PML AET uses 95 flux tower stations for
calibration of parameters associated with plant functional types, some
of which are depicted as blue points in Fig. 3.

SSEBop AET
The Operational Simplified Surface Energy Balance (SSEBop) com-

bines the formulation of potential evapotranspiration and the use of
land surface temperature through the development of an energy bal-
ance. For a reference crop, the standardised Penman–Monteith equation
applies. Then, actual evapotranspiration is calculated by using land
surface temperatures through an evapotranspiration fraction, which
varies spatially depending on water availability and vegetation health.
This means anchor pixels for wet and dry conditions (cold and hot,
respectively) need to be defined, and then evapotranspiration can be
calculated based on these extremes in proportion to LST (Savoca et al.,
2013).

Synthesis AET
The synthesis of global evapotranspiration was carried out by El-

nashar et al. (2021). This algorithm consists of an ensemble of different
global products to produce a continuous actual evapotranspiration from
1982 with a low uncertainty level irrespective of different climate and
landscape conditions. Among the algorithms used in the ensemble are
MODIS AET, PML AET, SSEBop, Surface Energy Balance System (SEBS),
GLEAM, and TerraClimate.

TerraClimate
TerraClimate contains monthly variables of the climatic water bal-

ance and climate. It combines information from WorldClim, CRU Ts4.0,
and the 55-year Japanese reanalysis datasets. In TerraClimate a one-
dimensional modified Thornthwaite–Mather climatic water-balance mod
is used, which consists of a single bucket model applied to the land
surface. Then, actual evapotranspiration is a result of this balance and
can be expressed as the sum of liquid water supply and the soil water
used (Abatzoglou et al., 2018).

We used Google Earth Engine (Gorelick et al., 2017) and Python
libraries for data acquisition and processing. Subsequent methodologies
and analyses were carried out using Google Colabs.

2.6. Catchment water balance

A monthly water balance (WB) was estimated using the following
relationship:
𝛿𝑆
𝛿𝑡

= 𝑃 − 𝐴𝐸𝑇 −𝑄𝑜𝑢𝑡 (1)

where 𝛿𝑆
𝛿𝑡 corresponds to the change in storage on a specific time

period, 𝑃 corresponds to the lumped catchment precipitation, 𝐴𝐸𝑇 is
the lumped actual evapotranspiration and 𝑄𝑜𝑢𝑡 is the discharge at the
outlet station of the river. Although 𝛿𝑆

𝛿𝑡 has been frequently assumed to
e zero, which could apply in the very long-term, transforming Eq. (1)
nto 𝐴𝐸𝑇 = 𝑃 − 𝑄𝑜𝑢𝑡. However, this is not necessarily the case in the
edium-term.

To cope with a scenario of changing storage in time, TWS and
WS anomalies from models and gravitational changes are used. For
his reason, GRACE mission data have been widely used to assist the
alculations of water balance (Syed et al., 2008; Sriwongsitanon et al.,
020; Wong et al., 2021). In this case, the change in storage can be
ormulated as:
𝛿𝑆
𝛿𝑡

=
𝑇𝑊 𝑆𝑡+1 − 𝑇𝑊 𝑆𝑡−1

2𝛥𝑡
(2)

being 𝛥𝑡 equal to 1 month. In this case, the change in storage is
considered as the difference in TWS or TWS anomalies before and after
the observation.
6

Additionally, a simplified balance without including AET was also
defined as:
𝛿𝑆
𝛿𝑡

= 𝑃 − 𝐸𝑝 (3)

being 𝐸𝑝 potential evapotranspiration. This way, AET and streamflow
are excluded from the analysis.

2.7. Validation of AET products

Estimated catchment storage change from GLDAS, WaterGAP, and
GRACE can then be compared against storage changes from the water
balance using different AET models, and taking into account the latitu-
dinal, radiative, and precipitation gradients at the regional scale. The
same can then be applied to the global scale to contrast the results.
Additionally, point actual evapotranspiration observations from flux
towers were compared against pixel estimates of different AET products
(single pixels at the flux tower location using AET products at their
original resolution and single pixels of resampled AET products at the
coarsest resolution of TerraClimate) and extrapolated to the catchment
scale, which results in a multiscale validation that allows a comparison
between validation scales (i.e., at the catchment and point scales). Flux
data assimilated into gridded models (FluxCom) was also compared
with AET products, both aggregated at the catchment scale.

From these results, different AET products can be ranked based on
different metrics, such as:

𝑟 =
∑

(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)
√

∑

(𝑥𝑖 − �̄�)2
∑

(𝑦𝑖 − �̄�)2
(4)

𝑅𝑀𝑆𝐸 =

√

∑𝑛
𝑖=1 (𝑥𝑖 − 𝑦𝑖)2

𝑛
(5)

𝑁𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

(6)

𝑀𝐴𝐸 =
∑𝑛

𝑖=1 |𝑥𝑖 − 𝑦𝑖|
𝑛

(7)

𝑏𝑖𝑎𝑠 =
∑𝑛

𝑖=1 (𝑦𝑖 − 𝑥𝑖)
𝑛

(8)

where 𝑟 is the Pearson correlation, 𝑅𝑀𝑆𝐸 is the root mean squared
error, 𝑁𝑅𝑀𝑆𝐸 is the normalisation of 𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸 is the mean
absolute error, 𝑥𝑖 are AET observations or reference TWS changes, 𝑥𝑚𝑎𝑥
nd 𝑥𝑚𝑖𝑛 are the maximum and minimum observed values, �̄� is the mean
f AET or reference TWS changes, while 𝑦𝑖 are AET or water balance
torage change estimations, and �̄� is the mean of AET or water balance
torage change estimations.

Statistically significant differences between AET models and TWS
roducts were evaluated based on the residuals and for the catchment
orrelation coefficients after applying a Fisher z-transformation. This
valuation was done either by using one-way analysis of variance
ANOVA) or through the non-parametric Kruskal Wallis test if the
NOVA assumptions were not met. These tests were complemented
y a Tukey’s range test or the non-parametric Dunn’s test to obtain
airwise comparisons, respectively.

Additionally, Budyko’s framework of analysis (Budyko, 1974) was
sed for different catchments to evaluate the consistency of the AET
roducts. This analysis restricts atmospheric water fluxes from the land
urface based on energy and water availability limits. In this case, Yang
t al. (2008) approach was used:

𝐴𝐸𝑇
𝑃

=
[

1 +
(𝐸𝑝

𝑃

)−𝑛] −1
𝑛

(9)

where the ratio 𝐴𝐸𝑇
𝑃 can also be expressed as evaporative index, while

the ratio between 𝐸𝑝 and 𝑃 is also defined as the aridity or dryness
index, and 𝑛 corresponds to a parameter that considers vegetation
and catchments characteristics. In this formulation, long-term annual
averages are used for the different variables used, and the parameter 𝑛
was obtained from a nonlinear least squares curve fit optimisation for

each AET product (Virtanen et al., 2020).
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Fig. 5. Mean annual AET from different products in the regional scale area.
3. Results

Mean annual AET for different products are in Fig. 5. While all prod-
ucts show a similar spatial pattern, local differences can be seen among
products. For instance, PML indicates larger AET in the northeastern
region, possibly caused by plateau monsoons. In contrast, the central-
southern region AETs have the largest variation between products,
where the Mediterranean climate is related to Sclerophyll vegetation
types and widespread agricultural land cover.

3.1. Regional catchment aggregated AET and TWS changes

Fig. 6 indicates the 95% confidence interval of storage changes
estimated through the water balance using different AET products,
i.e. the median plus/minus two standard deviation, and the time series
of TWS changes. This demonstrates that GLDAS, WaterGAP, and GRACE
storage changes are mostly within the 95% confidence interval of the
storage change estimates from the water balance and follow similar
seasonal patterns, which up to some degree supports the potential of
AET products. However, among TWS change products, GLDAS seems
to fall more consistently within the AET confidence intervals. In the
northern catchments the pattern of storage change is quite chaotic
up to the Limari River catchment, where seasonal patterns start to
be more evident. This behaviour is further analysed in Fig. 7 using
monthly boxplots of TWS changes for the different Chilean catchments.
This confirms a seasonal behaviour in storage changes that increases
southwards. Northern catchments mainly occupy desert climates with
very low rainfall, leading to small storage changes. This also highlights
small positive changes during summer in the Loa River catchment,
which are associated with plateau monsoons that occur in the Andes
mountain range. Monthly deviation of TWS changes are larger in north-
ern catchments using GRACE but increase comparatively southwards
using other TWS sources.

3.2. Point scale AET validation

The spatial distribution of the performance of the PML AET evalu-
ated against flux towers is in Fig. 8. Determination coefficients (R2),
RMSE, and NRMSE are quite variable depending on the location of
the flux tower. Larger R2 and lower normalised errors are found in
Europe. Some stations in western North America, in South America, and
southeastern Australia are associated with low R2 and high normalised
7

errors. A similar spatial distribution of performance metrics and magni-
tudes are obtained using other AET products (Supplementary materials,
Figure S2).

The performance of each product aggregated across time at their
original resolution and flux towers is in the left panel of Fig. 9. MODIS
AET has the best performance in terms of R2, which means that it
captures the temporal and spatial pattern best, but it is also the only
product that tends to overestimate AET. The lowest errors are obtained
using PML AET. The worst performance is obtained using SSEBop,
which consistently underestimates AET. All products have non trivial
errors, with the best R2 being only 0.62, and the best RMSE being
0.78 (mm d−1), implying about 15% of the maximum observed AET.
Very small performance differences compared to the original resolution
occur when AET products are resampled to the coarsest resolution of
TerraClimate (right panel of Fig. 9). Therefore, resolution differences
do not seem to play a significant effect on the performance of models
at a spatial resolution between 500 m and about 4 km.

3.3. Catchment scale AET validation

At the Chilean regional scale, the performance of predictions of
𝛿𝑆/𝛿𝑡 per catchment using PML AET are in Fig. 10. Similar magnitudes
and spatial patterns for performance metrics are obtained using all AET
products and averaged rainfall from meteorological stations (Supple-
mentary materials, Table S1). For the correlations and errors (RMSE)
a clear gradient is observed. Errors tend to increase southwards even
though correlations increase. This is related to the magnitude of sea-
sonal changes in TWS and storage changes estimated through the water
balance that can be observed in Figs. 6 and 7, and may be also related
to the rainfall gradient shown in Fig. 1. Larger TWS changes may lead
to larger errors, but also lead to a better representation of the temporal
pattern. TWS changes depend on differences between water inputs
and outputs in the catchments. High rainfall leads to large changes
in storage, while small water inputs lead to small water losses due to
the water limit in Budyko’s approach, also causing small TWS changes.
Therefore, the magnitude of prediction errors increases with increasing
water availability, although seasonal patterns are more easily captured
by models. For this reason, by normalising errors, the latitudinal error
pattern changes. Evaluating the TWS change references, GLDAS leads
to better results, increasing the correlation in northern catchments and
reducing the errors compared with WaterGAP and GRACE.

The regional and global catchment validations per AET and TWS
product are in Fig. 11. For Chilean catchments, results using gridded
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Fig. 6. Storage change time series using GLDAS, WaterGAP, and GRACE and 95% confidence interval of storage change using water balances for different Chilean catchments.
rainfall data from CR2MET are similar to those obtained averaging
rainfall from meteorological stations per catchment (Supplementary
materials, Figure S3), but leading to a slight increase in R2 and errors.
Small differences between products can be observed. At the Chilean
regional scale, which covers a smaller range of observations compared
to the global scale, the largest R2 occurs using GLDAS together with
Synthesis and MODIS AET (0.71), followed closely by PML (0.69)
and SSEBop (0.68) AET. Non significant differences (p-value > 0.05)
between Fisher’s z-transformation of correlations were found between
AET models for Chilean catchments, but statistically significant differ-
ences were found between GLDAS and WaterGAP TWS products for
SSEBop and Synthesis models (Supplementary materials, Table S2).
Using AET models in the water balance significantly improved results
8

compared to the simplified balance (𝑃 − 𝐸𝑝), reducing the RMSE to
almost a third and leading to a significant increase in R2. On the other
hand, significant differences were found for the residuals between AET
models (Supplementary materials, Table S3). The lowest errors occur
using TerraClimate (RMSE = 36.56) despite its lower spatial resolution
(∼5 km), followed by PML AET (RMSE = 38.25). Comparing TWS prod-
ucts, GLDAS represents a significant gain in performance with respect
to WaterGAP and GRACE for several of the AET models (Supplementary
materials, Table S4). Interestingly, even though Mascons solutions from
GRACE should be used with caution given its low native resolution,
they still lead to a relatively good performance, even outperforming
WaterGAP.
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Fig. 7. Monthly distribution of GLDAS, WaterGAP, and GRACE TWS changes per Chilean catchment.
Different results are observed for the Australian latitudinal gradi-
ent (Figure S4), showing variable performances. For the AET models,
Synthesis, SSEBop, and PML have higher R2 values (0.52, 0.51, and
0.5, respectively). Conversely, Synthesis, PML, and TerraClimate AET
resulted in the lowest errors, with RMSE values of 26.4, 27.0, and
28.5 mm month−1, respectively. Notably, the use of GLDAS TWS for
Australian catchments also improves the results compared to other TWS
products.

At the global scale, the AET products are more homogeneous in
performance and lead to a smaller but still significant improvement
of results compared to the simplified balance (𝑃 − 𝐸𝑝). Maximum R2

(0.59) occurs by combining GLDAS with MODIS, followed by Synthe-
sis AET. Significant differences in Fisher’s z-transformed correlations
between AET models only occur using GLDAS TWS and only between
TerraClimate and the rest of AET models (Supplementary materials,
Table S5). Again, GLDAS TWS changes lead to the best performance
regardless of the AET product used (Supplementary materials, Table
S6). Significant differences between AET models were observed based
on the residuals (Supplementary Materials, Table S7). The lowest errors
are obtained using the FluxCom model (RMSE = 43.91), that combines
flux, meteorological and satellite inputs, followed by TerraClimate
(RMSE = 46.0) and Synthesis AET (RMSE = 46.72). Lowest errors at
the regional and global scale are about 13% and 11% of the range of
9

TWS changes, respectively, and tend to be similar to the magnitudes of
the errors from the point scale validation.

Evaluating the extrapolation of flux towers AET in the water bal-
ance (lowest panel of Fig. 11) leads to larger errors compared with
remote sensing AET models in terms of storage changes except using
WaterGAP. However, this is also variable depending on the catchment
(Fig. 12). The comparison of performances constrained to catchments
that contain flux towers is in the Supplementary materials (Figure S5).
Metrics are similar to those used in all catchments.

Budyko curves for regional and global catchments are in Fig. 13. Dif-
ferences in the scale of the 𝑥-axis (dryness index) between regional and
global Budyko curves are strong due to northern Chilean catchments,
which are the driest places on Earth (Bozkurt et al., 2016). PML, MODIS
and TerraClimate AET indicate consistent behaviour at both scales,
with data in a few severely dry catchments exceeding the water limit.
SSEBop, on the other hand, shows a large variation across catchments.
Differences between models that result in some of them exceeding
the water limit can be attributed to algorithm differences. Models
relying on energy budgets, such as SSEBop and algorithms derived from
Penman–Monteith equations (PML and MODIS), might be influenced
by the calculation of net radiation and soil heat flux, particularly in
arid conditions. Water balance-based models like TerraClimate tend to
better preserve water volumes, thus avoiding significant exceedance of
the water limit. Additionally, algorithms that integrate multiple sources
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Fig. 8. Performance of PML AET against selected flux towers.
Table 2
Optimised 𝑛 parameter from Budyko curve.

AET product Regional Global

PML AET 1.47 2.24
MODIS AET 1.32 1.17
Synthesis AET 0.75 2.05
TerraClimate AET 0.66 1.84
SSEBop AET 0.44 1.33

of information (such as Synthesis AET) may lead to a smoothing or at-
tenuation of differences. At the global scale, no catchments within arid
(5 < Dryness index ≤ 20) and hyperarid climates (Dryness index > 20)
were used (Atlas, 1992), and only MODIS AET derived points did not
exceed the water limit. The 𝑛 value from the curve optimisation varies
depending on the AET product and the analysis scale (i.e., regional and
global) as shown in Table 2.

The range of values associated with Budyko’s 𝑛 parameter are close
to the ranges empirically described for instance in Gunkel and Lange
(2017) for 𝜔 in Fu’s equation (Zhang et al., 2004), even though 𝑛
in Yang et al. (2008) ranges from 0 while 𝜔 in Fu’s formulation ranges
from 1, and values are quite variable. Global scale catchments studied
lead to larger 𝑛 values except using MODIS AET, suggesting in general
more rainfall becoming AET compared with regional catchments. This
10
may be associated with vegetation types adapted to arid/hyperarid
conditions in the regional gradient of hydroclimatic conditions while
vegetation from global catchments studied might be more prone to
transpiration. Variation of 𝑛 between models is also quite significant,
indicating that PML has the highest values and therefore a larger ratio
AET-rainfall than other models. On the other hand, only 𝑛 values from
MODIS AET decrease from the regional to the global scale, implying
lower evapotranspiration with respect to precipitation at the global
scale.

At the regional scale there is a clear relationship between latitude
and the performance of catchment scale storage changes (Fig. 14),
and similarly a relationship between rainfall-radiation and catchment
storage changes. This is not directly visible for global catchments. How-
ever, for the global catchments selected the precipitation range starts
from about 40 mm month−1, while for Chilean regional catchments
this value leads to a good performance. More generally, lower rainfall
tends to decrease the accuracy of the AET predictions. Similarly, solar
incoming radiation from global catchments selected ranges from about
10 MJ m−2 d−1 to 22 MJ m−2 d−1, while Chilean catchments selected
range from 18 MJ m−2 d−1 to about 26 MJ m−2 d−1 which may explain
the differences. Across the latitude gradient, the regional and global
catchments tend to agree. In both cases, a drop in performance is
observed from latitudes −40◦ to −22◦, region that includes the southern
hemisphere subtropical ridge with very little rainfall.
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Fig. 9. Density scatter plots of the time series of global AET products against flux towers (point observations) at the original resolution (left panel) and resampled at the coarsest
resolution of TerraClimate (right panel).
4. Discussion

Several studies have developed and validated AET models using
point observations (Zhang et al., 2019; Mu et al., 2013; Elnashar
et al., 2021; Senay et al., 2020; Guerschman et al., 2009). These
highlight different performances depending on the flux towers used. For
instance, Zhang et al. (2019) used 95 flux towers to validate PML AET
and found an R2 of 0.72 and a RMSE of 0.69. Mu et al. (2013) validated
their results (MODIS AET) against 46 flux towers with a mean R2 of
0.65 and an average MAE of 0.33, but with a range of R2 from 0.11 to
0.91. Senay et al. (2020) used only 12 flux towers to assess SSEBop and
found a mean R2 of 0.44 and a mean RMSE of 0.72, but with a range
of R2 from 0.01 to 0.74. In Elnashar et al. (2021) different models are
compared with 645 flux towers. The monthly PML AET had the best R2

of 0.58 and a RMSE of 0.87 mm day−1, followed by the Synthesis AET
with a R2 of 0.58 and a RMSE of 0.9 mm day−1. In this study, 27 flux
towers were used and point validation performances were within the
range of results found in other studies. For instance, MODIS AET had
the highest R2 of 0.62 with a RMSE of 0.85 mm day−1 and was followed
by PML AET with a R2 of 0.57 and a RMSE of 0.78 mm day−1. Clearly
AET products evaluated at the point scale have limitations. Moreover,
there is a gap in the knowledge of how the performance of these models
changes if aggregated to a larger scale. Therefore, some studies have
used the water balance as an alternative to address this issue assuming a
null change in storage (Guerschman et al., 2009; King et al., 2011), but
11
this limits the study to at least annual time scales. Another validation
alternative at the catchment scale was used by Sriwongsitanon et al.
(2020) in Thailand, but it was limited only to subtropical climates.
However, as seen in Elnashar et al. (2021) and in Salazar-Martínez et al.
(2022), global AET model performance varies depending on climate
and land cover types, and highest uncertainties in AET models occur
in dry regions in South America (Sörensson and Ruscica, 2018).

For this reason, we also evaluated the performance of global remote
sensing based AET products at the catchment scale using a water
balance and comparing storage changes with TWS changes as in Sri-
wongsitanon et al. (2020), but including different sources with the
purpose to evaluate how performances vary across scales. At both
scales, AET products have limitations that result in a maximum R2 of
about 0.7, and RMSEs that are between 10% and 15% of the range of
observations. While at both scales performances are similar in terms of
R2, storage changes at the catchment scale have a slightly larger RMSE
compared with AET at the point scale, with mean magnitudes being
0.4 and 0.8 times larger at the regional and global scales using the best
performing TWS change product (GLDAS), respectively. Additionally,
gridded remote sensing AET products lead in general to lower errors
than the extrapolation and use of AET from flux towers in the water
balance at the catchment scale. Other validation approaches can also
be included. For instance, here we demonstrated the utility of Budyko’s
approach, and obtained consistent results at the catchment scale, specif-
ically using PML, MODIS and TerraClimate AET, even though some few
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Fig. 10. Performance of storage changes contrasting water balances using PML AET
and GLDAS, WaterGAP, and GRACE TWS in Chilean regional catchments.

catchments slightly exceeded the water limit. This has been similarly
observed using global AET products in some water limited regions of
South America (Sörensson and Ruscica, 2018). Budyko’s 𝑛 parameter
was larger for global catchments than for regional catchments se-
lected from the hydroclimatic gradient because the regional catchments
include arid and hyperarid climate conditions, which might foster veg-
etation types adapted to the lack of water. Budyko’s approach has been
mentioned as a method to validate both rainfall and evapotranspiration
remote sensing data (Koppa and Gebremichael, 2017; Mianabadi et al.,
12
2020), and can be particularly useful in data scarce scenarios (Gunkel
and Lange, 2017). AET modelling, regardless of the method, is a
complex process to study (Izadifar and Elshorbagy, 2010), since it is
well known that it depends on vegetation characteristics, soil water
availability, and climate conditions (Allen et al., 1998; Stephenson,
1998).

Water availability is an important factor that affects AET (Jung
et al., 2010) and in this study, it also seems to impact the performance
of AET modelling. Similarly, in other studies climate types have led to
performance differences in AET models compared to flux towers (El-
nashar et al., 2021; Salazar-Martínez et al., 2022). The latitudinal
gradient in AET performance in this current study is strongly influenced
by rainfall and solar incoming radiation. Low rainfall relates to lower
performance at the regional scale (Chile) and is also related to large
variability in the performance of AET products at the global scale,
particularly with respect to the temporal patterns as highlighted by
Pearson correlations in Fig. 14. For the Chilean regional catchments,
rainfall over 30 mm month−1 leads to strong to very strong correlations
between TWS datasets and water balance estimated storage changes
(correlations greater than 0.6), but for global catchments values below
60 mm month−1 create high variability. This can be explained by an
increase in the variability of rainfall in arid and desert climates with
reduced seasonality, which is evident in the low seasonality of TWS
changes from Fig. 7. This also causes water available to be relatively
unpredictable for evapotranspiration, leading to a poor performance
of global AET models (Crawford and Gosz, 1982) and also leads to
large AET uncertainties in some arid and semiarid regions from South
America (Sörensson and Ruscica, 2018). Another way to conceive
this may imply the ‘‘noise to signal ratio’’ concept. In dry regions,
the signal of water balance components is very small, presenting a
reduced seasonality, and therefore is very hard to capture its temporal
behaviour. As a consequence, the noise to signal ratio in these regions is
quite significant. On the contrary, in wet regions the seasonality signal
is strong and can be easily detected. Therefore, the noise to signal
ratio in these regions is small. Thus, in contrast to Sriwongsitanon
et al. (2020) study carried out in Thailand, the performance of AET
products was spatially variable due to different climate types. Overall,
in terms of modelling the temporal patterns of AET, all products
perform regular to poorly under arid conditions. However, given the
low precipitation under such conditions, errors tend to be relatively
small. For the latitudinal gradient of Chile this is particularly evident.
When we overlay the Köppen Geiger climate types from Beck et al.
(2018) with the correlations between storage changes from GLDAS and
water balance changes in Chilean catchments some insights emerge.
Firstly, catchments dominated by an arid desert climate in the northern
region show moderate correlations. Secondly, catchments characterised
by arid steppe and temperate climates with dry and hot summers in the
central region exhibit strong correlations. Moving southwards, catch-
ments dominated by a temperate climate with dry and warm summers
demonstrate very strong correlations. It is clear from these climate
differences that in general the accuracy of the overall water balance
closure also decreases with increasing aridity. This may also account for
the water limit exceedance observed in northern catchments under an
arid desert climate. This deficiency in terms of AET modelling in more
arid climates creates a potential for improvement, which is important
since the signals of water balance components in arid and semi-arid
regions are difficult to identify, indicating a priority for future research.
This is specially important for water management because these regions
sustain significant agricultural lands reliant on water resources (Golla,
2021), and for the protection of environmental functioning since fragile
water dependant ecosystems occur in these regions (Cui and Shao,
2005).

Different factors may contribute to the uncertainties of storage
changes derived from the water balance calculation. Gridded rainfall
products are one of these sources. As discussed in Section 2.4, errors
in rainfall are propagated into the water balance. CHIRPS rainfall
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Fig. 11. Density scatter plots between monthly GLDAS (left column panel), WaterGAP (middle column panel), and GRACE (right column panel) TWS changes and water balance
storage changes by product for Chilean (above) and GRDC (below) catchments. In the GRDC catchments, the lowest panel shows the performance using the AET from flux towers
in the water balance within 11 catchments.
data provides a good representation of the observations, but in desert
climates the accuracy reduces (Fuentes et al., 2022). At the regional
scale, CR2MET provides more correct rainfall patterns. However, it
still causes non-negligible errors compared with meteorological stations
(mean bias of 7 mm month−1 and 3 mm month−1 for CR2MET and
CHIRPS, respectively). These values are offset by AET errors in the
storage change estimates for regional catchments, leading to biases that
range from −7.4 mm month−1 to 8.23 mm month−1, but increase to
over 20 mm month−1 using global catchments. However, some global
catchments are considerably larger than regional ones, which might
13
mean that propagated errors might not cancel out, but grow with
catchment size, leading to increasing errors. On the other hand, errors
in observational data are not uncommon, which may apply to both
rainfall observations and river discharge (McMillan et al., 2012). Di Bal-
dassarre and Montanari (2009), for instance, conclude that discharge
observation uncertainties are far from negligible. On the other hand,
TWS change products were contrasted. The coarse spatial resolution
of GRACE data regardless of the mascon solution resolution (Save
et al., 2016) still leads to relatively good results, even outperforming
WaterGAP, but it might be a result of low regional variability in areas
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Fig. 12. Time series comparison in 10 catchments between GLDAS TWS changes and
water balance storage changes using AET from flux towers and the PML model.

with large rainfall and reduced rainfall in highly variable arid regions.
However, it is outperformed by its assimilation into GLDAS, especially
on arid regions, which reflects the regional improvements described
in Li et al. (2019).

Overall, the highest average correlation between observed and pre-
dicted variables is related to MODIS AET, followed closely by the
14
Synthesis, SSEBop, and PML AET. However, the lowest errors at the
point scale of validation are by using PML AET, which also has the
third lowest average errors across the global catchments. On the other
hand, the lowest errors at the catchment scale are obtained using
FluxCom, followed by TerraClimate, although the last gives the second
largest errors at the point scale validation. These results may explain
some of the differences between remote sensing and hydrologic models.
Here, remote sensing products are better in general at capturing spatial
variability of AET compared to hydrologic models, due to their higher
spatial resolution and the direct observation of landscape parameters.
Process-based products, although constrained to maintain the mass bal-
ance which leads to low errors at the catchment scale in TerraClimate,
are limited in representing spatial variability. SSEBop, by its part, led to
a large dispersion in the Budyko curve, which may be related to the re-
gional biases described in Senay et al. (2020). Although Elnashar et al.
(2021) sought to develop an AET product through an ensemble of other
AET datasets with the purpose of reducing uncertainties regardless of
land cover or climate conditions, in the studied catchments it did not
outperform all other products. PML AET was described as performing
as well as the ‘‘state of the art’’ AET models (Zhang et al., 2019). In
this study, this statement is partially confirmed, but it requires further
attention in arid climates. Related to this, in Salazar-Martínez et al.
(2022), the GLEAM model depicted good performance in arid climates
against flux towers, which may be considered in future studies. Finally,
since all components of the water budget have uncertainties (Levin
et al., 2023), further analysis is needed to evaluate the weight and
potential propagation of these uncertainties into water storage change
errors. However, this requires future research.
Fig. 13. Budyko curves applied to Chilean (left) and global (right) catchments. The blue and red continuous lines represent the water and energy limits to evapotranspiration.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 14. Latitudinal (left column panel), rainfall (middle column panel), and incoming solar radiation (right column panel) gradients and their relationship with Pearson correlations
in storage changes (between GLDAS TWS and catchment water balance storage changes) for Chilean (above) and global (below) catchments.
5. Conclusions

Different moderate resolution global AET models were evaluated
using point and catchment scale validations on a latitudinal gradient
in northern-central Chile at the regional scale and at different world
catchments. Point validation was evaluated using flux towers, while
catchment scale validation was done comparing water budget stor-
age changes against TWS change products. Additionally, the Budyko’s
approach was also applied to evaluate AET products. Point and catch-
ment scale validation tended to converge, with best performances of
on average R2 ∼ 0.7, and errors that account for about 15% of the
range of observed variables. Arid conditions led to a degradation of
performances, specially in terms of temporal pattern modelling. While
MODIS AET led to highest R2, but closely followed by Synthesis and
PML AET, PML and TerraClimate AET led to lowest errors at the point
and catchment validation scales, respectively. However, these results
also vary across regions. PML, MODIS, and TerraClimate AET indicate
a consistent pattern in the Budyko curve, with few arid catchments
exceeding the water limit. Data Assimilation of GRACE into GLDAS
leads to a better regional performance compared against other TWS
datasets.

Although the evaluated AET models are defined for large scale
studies, having a moderate resolution, local scale remote sensing AET
models at high resolution (<100 m; e.g., METRIC from EEFlux: https://
eeflux-level1.appspot.com/; SEBAL: https://github.com/et-brasil/geese
bal; TSEB: https://github.com/kaust-halo/geeet) may also be studied,
since these can facilitate the quantification of water demand to improve
irrigation management. The performance of high scale AET resolution
models can also be compared against moderate resolution AET models
to investigate if better resolution leads to better results. However, this
is considered future research.
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