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Abstract: The Pareto–Feller distribution has been widely used across various disciplines to model
“heavy-tailed” phenomena, where extreme events such as high incomes or large losses are of interest.
In this paper, we present a new bivariate distribution based on the Appell hypergeometric function
with marginal Pareto–Feller distributions obtained from two independent gamma random variables.
The proposed distribution has the beta prime marginal distributions as special case, which were
obtained using a Kibble-type bivariate gamma distribution, and the stochastic representation was
obtained by the quotient of a scale mixture of two gamma random variables. This result can be viewed
as a generalization of the standard bivariate beta I (or inverted bivariate beta distribution). Moreover,
the obtained bivariate density is based on two confluent hypergeometric functions. Then, we derive
the probability distribution function, the cumulative distribution function, the moment-generating
function, the characteristic function, the approximated differential entropy, and the approximated
mutual information index. Based on numerical examples, the exact and approximated expressions
are shown.

Keywords: generalized gamma distribution; beta prime marginal distributions; generalized hyperge-
ometric function; moment generation function; entropy
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1. Introduction
The Pareto distribution has been a key tool in economics and for modeling wealth

distribution, as well as in other areas like insurance and finance, where capturing extreme
events is crucial [1]. However, real-world data often exhibit more complex structures than
those described by the classical Pareto distribution [2]. In this context, Feller (1971) [3]
proposed an extension called the Pareto–Feller distribution which includes an additional
shape parameter, allowing the distribution to better fit a wider range of phenomena with
thicker or heavy tails as needed [1].

The Pareto–Feller distribution has been widely used across various disciplines to
model “heavy-tailed” phenomena, where extreme events such as high incomes or large
losses are of interest. The Pareto–Feller distribution emerged from the need for a distribu-
tion that offers greater flexibility in data modeling by introducing an additional parameter
to control the tail shape and skewness, thus providing a more accurate description of em-
pirical data compared with the standard Pareto distribution [2]. This distribution has found
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applications in various fields such as risk theory, river flow modeling, and natural disaster
analysis due to its ability to represent both heavy tails and asymmetric distributions. The
additional flexibility provided by this distribution is especially valuable in situations where
conventional distributions, like the classical Pareto distribution, fail to capture the observed
variability and extreme behavior in the data. Notable variants include Pareto type I, used
in wealth analysis [1], the generalized Pareto distribution for modeling extreme events [4],
and the Lomax or Pareto type II distribution, which is applied in survival analysis [5]. Other
important variants are Pareto type IV, which offers greater flexibility in tail shapes [6], and
the truncated Pareto distribution, which is used in scenarios with physical upper limits [7].
Additionally, the log-logistic distribution, which is employed in contexts similar to the
Pareto distribution but with greater flexibility in the tails, is used in survival analysis and
system failure studies [8].

The Pareto–Feller distribution can be constructed as a location-scale transformation of
the ratio of two independent gamma-distributed random variables. This method allows
the distribution to capture a wide range of tail behaviors and offers flexibility in modeling
heavy-tailed phenomena. The use of gamma distributions for generating such models
is well documented in the statistical literature. Specifically, more flexible models can
be obtained through an appropriate transformation of a bivariate gamma distribution
or independent copies of it. This approach is appealing because the correlation of the
transformed bivariate gamma distribution is directly tied to the correlation of the original
bivariate gamma distribution. Such constructions are commonly used in spatial data
modeling. Examples include t−distributed spatial models [9], Weibull spatial models [10],
and Poisson spatial models [11]. On the other hand, Kotz et al. (2004) [12] described similar
methods for transforming distributions via ratios of gamma variables which are widely
applicable in reliability and survival analysis contexts [12].

Since the construction of the Pareto–Feller distribution is related to the gamma dis-
tribution, it is necessary to first define the bivariate gamma distribution to develop the
bivariate case of the Pareto–Feller distribution. Thus, we start by defining a sequence of
independent normal random variables and show how these lead to a gamma distribution
as follows. Let Zik, i = 1, . . . , ν with ν > 2 be a sequence of independent standardized
normal random variables whose correlation function is given by Corr(Zik, Zjk) = ρ, i ̸= j,
and let

Wk =
ν

∑
i=1

Z2
ik

α
, α > 0, k = 1, 2. (1)

Then, Wk is a random variable with a gamma marginal distribution (i.e., Wk ∼ Gamma(ν/2, α/2),
where ν/2 represents the shape parameter and α/2 represents the rate parameter), with the
probability density function (pdf) being given by

fWk =
αν/2

2ν/2Γ(ν/2)
wν/2−1

k e−αwk/2,

where E[Wk] = ν/α and Var(Wk) = 2ν/α2 [10].
The construction of a bivariate Pareto–Feller distribution is derived from the ratio

of two bivariate gamma distributions as shown in Section 2. We consider the bivariate
vector W = (W1, W2)

⊤, where the stochastic representation of Wk, k = 1, 2 is given in
Equation (1). Vere-Jones [13] showed that the distribution of W has a correlated bivariate
gamma distribution with the parameters ν > 0 and γ > 0, while the pdf is given by

fW(w) =
2−νγν(w1w2)

ν/2−1e
− γ(w1+w2)

2(1−ρ2)

Γ
(

ν
2
)
(1 − ρ2)ν/2

(
γ
√

ρ2w1w2

2(1 − ρ2)

)1−ν/2

Iν/2−1

(
γ
√

ρ2w1w2

(1 − ρ2)

)
, (2)

where Iα(·) is the usual modified Bessel function of the γ-order of the first kind. Gamma
variables can be used as building blocks for the construction of flexible non-Gaussian vari-
ables. Henceforth, we will call W a gamma random vector with an underlying correlation
ρ [14,15] such that the correlation of the gamma bivariate is ρW = ρ2. Moreover, when
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ρ = 0, Equation (2) can be written as the product of two independent gamma random
variables (i.e., Wk ∼ Gamma(ν/2, α/2), k = 1, 2). Thus, zero pairwise correlation implies
pairwise independence, as in the Gaussian case. The pdf fW was first discussed in [16], and
its properties were studied in [17,18].

The bivariate Pareto–Feller distribution represents a less commonly discussed extension
in the statistical literature. It builds upon the principles established by the univariate Pareto
distribution. The authors of [19] addressed extreme value distributions and included dis-
cussions which may be relevant to bivariate generalizations. Additionally, the authors
of [20] provided further insights into bivariate distributions, enriching the understanding
of Pareto–Feller distributions. These references offer both theoretical and practical frame-
works for researching and applying Pareto–Feller distributions in bivariate contexts. The
latter works motivated this paper, which presented a bivariate Pareto–Feller distribution
built from an Appell hypergeometric function.

This paper is organized as follows. Section 2 presents the bivariate Pareto–Feller
distribution. In particular, the pdf, cumulative distribution function (cdf), joint moment-
generating function (mgf), characteristic functions, cross-product moment function, mean,
variance, covariance, and correlation function are presented. In Section 3, some approxi-
mations of the differential entropy and, consequently, the mutual information index are
presented. Finally, some discussions and conclusions are presented in Section 4. All simula-
tions included special hypergeometric functions such as the Appell hypergeometric one,
and all were implemented in R 4.4.1. software [21] using the zipfR and hypergeo packages.
All proofs of theorems and propositions can be found in the Appendix A.

2. Bivariate Pareto–Feller Distribution
Let us define a random variable V with support on the positive real line, defined as a

scale mixture of two gamma random variables:

V =
W
R

, (3)

where W ∼ Gamma(α/2, 1), α > 0 and R ∼ Gamma(ν/2, 1), ν > 0. Then, V is a random
variable with a marginal distribution of the beta I type or beta prime [12,22] and denoted
by V ∼ Be′(ν/2, α/2), with the pdf given by

fV(v) =
Γ
(

ν+α
2
)

Γ
(

ν
2
)
Γ
(

α
2
)vν/2−1(v + 1)−(ν+α)/2.

The beta prime distribution is anchored to a shape parameter of the gamma distributions.
This construction was previously proposed in [23–25].

Based on the stochastic representation in Equation (3), we consider the bivariate vector
of V = (V1, V2)

⊤, where

Vi =
Wi
Ri

, i = 1, 2; (4)

Here, W = (W1, W2)
⊤ and R = (R1, R2)

⊤ are two correlated bivariate gamma dis-
tributions with correlations ρW = ρR = ρ2, where Wi ∼ Gamma(α/2, 1), α > 0 and
Ri ∼ Gamma(ν/2, 1), ν > 0, Ri ⊥ Wj, ∀i, j, i, j = 1, 2. Thus, Vi ∼ Be′(ν/2, α/2), i = 1, 2.

A new bivariate distribution with a beta prime marginal distribution obtained from
the Kibble-type bivariate gamma distribution given in Equation (2) is presented in the
following theorem. This result can be viewed as a generalization of the standard bivariate
beta I distribution (or inverted bivariate beta distribution) [26].

Theorem 1. Let W and R be two independent gamma random variables, and let V = WR−1.
Then, the pdf of V = (V1, V2)

⊤ ∈ R+ ×R+ is given by
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fV(v) =
(v1v2)

ν/2−1Γ2( ν+α
2
)
[(v1 + 1)(v2 + 1)]−(ν+α)/2

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2

×F4

(
ν + α

2
,

ν + α

2
;

ν

2
,

α

2
;

ρ2v1v2

(v1 + 1)(v2 + 1)
,

ρ2

(v1 + 1)(v2 + 1)

)
, (5)

where F4 is an Appell hypergeometric function of the fourth kind, defined as

F4(a, b; c, c′; w, z) =
∞

∑
k=0

∞

∑
m=0

(a)k+m(b)k+mwkzm

k!m!(c)k(c′)m
, |

√
w|+ |

√
z| < 1.

The special functions F4 and the Gaussian hypergeometric function 2F1 are related
through the identity

F4(a, b; c, c′; w, z) =
∞

∑
k=0

(a)k(b)kzk

k!(c′)k
2F1(a + k, b + k; c; w), |

√
w|+ |

√
z| < 1.

where (a)k := Γ(a + k)/Γ(a), for which k ∈ IN ∪ {0} is the Pochhammer symbol. The
Gaussian hypergeometric function is a special case of more general power series, where
the generalized hypergeometric function is defined for p, q = 0, 1, 2, . . . as

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; x) :=
∞

∑
k=0

(a1)k, (a2)k, . . . , (ap)k

(b1)k, (b2)k, . . . , (bq)k

xk

k!

When ρ = 0, the pdf in Theorem 1 involves the product of two independent beta prime
random variables Be′ ∼ (ν/2, α/2).

We now consider a new random variable Y, defined as

Y := µ +
q
c

V1/p, (6)

where Y ≥ µ ≥ 0, c =
Γ
(

ν
2+

1
p

)
Γ
(

α
2−

1
p

)
Γ( ν

2 )Γ( α
2 )

, q > 0, and p > 0. This random variable is a

marginal Pareto–Feller distribution. Specifically, using the notation of [20], we marginally
have Y ∼ PF(µ, q/c, 1/p, ν/2, α/2) with a density defined by

fY(y) =

(cp)
q

(
c(y−µ)

q

)pν/2−1
Γ
(

ν+α
2
)

Γ
(

ν
2
)
Γ
(

α
2
) [(

c(y − µ)

q

)p
+ 1
]−(ν+α)/2

, y > µ,

and a mean and variance given by

E[Y] = µ + q,

Var(Y) = q2

 Γ
(

ν
2 + 2

p

)
Γ
(

α
2 − 2

p

)
cΓ
(

ν
2 + 1

p

)
Γ
(

α
2 − 1

p

) − 1

,

respectively, with αp > 4 [3].
The Pareto–Feller distribution includes as special cases different types of Pareto ran-

dom variables definitions (type I, II, III, and IV; see [20]) and the so-called beta prime one.
If we consider µ = 0, then Y ∼ PF(0, q/c, 1/p, ν/2, α/2), and Y = (Y1, Y2)

⊤ is a random
vector with a marginal Pareto–Feller distribution. A new bivariate distribution based on
marginal Pareto–Feller distributions is presented in the following theorem.

Theorem 2. Let Y = (Y1, Y2)
⊤, where Yi := qi

c V1/p
i , i = 1, 2. The pdf of Y is given by
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fY(y) =

(cp)2

q1q2

(
c2y1y2
q1q2

)pν/2−1
Γ2( ν+α

2
)

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2

[((
cy1

q1

)p
+ 1
)((

cy2

q2

)p
+ 1
)]−(ν+α)/2

× (7)

F4

ν + α

2
,

ν + α

2
;

ν

2
,

α

2
;

ρ2(c2y1y2)
p(q1q2)

−p((
cy1
q1

)p
+ 1
)((

cy2
q2

)p
+ 1
) ,

ρ2((
cy1
q1

)p
+ 1
)((

cy2
q2

)p
+ 1
)
.

The pdf in Theorem 2 considers an Appell hypergeometric function F4. We can write
this as a series of hypergeometric functions 2F1.

Figure 1 illustrates the pdf of Equation (7) for some parameters. When ρ increases, the
largest values of y1 and y2 in the pdf are produced. However, these values depend on the
other parameters. Independent of the ρ value, the pdf is close at the origin (y1, y2) ≈ (0, 0)
with a positive bias, and it decays exponentially for the smallest values (ν = 4, α = 4,
q1 = 4, q2 = 4, and p = 4). When ρ = 0.9 and ν, α = 8 or 12, for example, the pdf has
more symmetry and variability but less bias. Note that the pdf of Y, given in Equation (5),
is symmetric for negative values of ρ. Specifically, the same representations hold for
ρ = −0.25,−0.5,−0.9 from Figure 1 while keeping the other parameters fixed.

Theorem 3. The joint cdf of Y = (Y1, Y2)
⊤ in Equation (7) can be expressed as

FY(Y1 ≤ t1, Y2 ≤ t2) =

(
c2t1t2
q1q2

)pν/2
Γ2( ν+α

2
)

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2

×
∞

∑
k=0

∞

∑
m=0

(
ν+α

2
)2

k+mρ2k+2m

k!m!
(

ν
2
)

k

(
α
2
)

m(ν/2 + k)2

(
c2t1t2

q1q2

)pk

×2F1

(
ν + α

2
+ k + m,

ν

2
+ k;

ν

2
+ k + 1;−

(
ct1

q1

)p)
×2F1

(
ν + α

2
+ k + m,

ν

2
+ k;

ν

2
+ k + 1;−

(
ct2

q2

)p)
. (8)

Proposition 1. The joint mgf and characteristic functions of Y = (Y1, Y2)
⊤ given in Equation (7) are

(a) MY(t1, t2) =

(cp)2

q1q2
Γ2( ν+α

2
)

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2

×
∞

∑
k=0

∞

∑
m=0

(
ν+α

2
)

k+m

(
ν+α

2
)

k+m(
ν
2
)

k

(
α
2
)

mk!m!
ρ4km(c2/q1q2)

(pν/2+pk−1)

×
[

1
p

( q
c

)p(ν/2+k) Γ(ν/2 + k)Γ(k + m + ((ν + α)/2)
Γ(m + ((ν + α)/2) + ν/2)

]2

[
− (t1)

2 − 1
(t1)4

][
− (t2)

2 − 1
(t2)4

]
, (9)

with t < 0 and

(b) ϕY(t1, t2) =

(cp)2

q1q2
Γ2( ν+α

2
)

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2

×
∞

∑
k=0

∞

∑
m=0

(
ν+α

2
)

k+m

(
ν+α

2
)

k+m(
ν
2
)

k

(
α
2
)

mk!m!
ρ4km(c2/q1q2)

(pν/2+pk−1)
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×
[

1
p

( q
c

)p(ν/2+k) Γ(ν/2 + k)Γ(k + m + ((ν + α)/2)
Γ(m + ((ν + α)/2) + ν/2)

]2

×
[
− (it1)

2 − 1
(it1)4

][
− (it2)

2 − 1
(it2)4

]
. (10)

ρ = 0.25 ρ = 0.75 ρ = 0.90

ν = α = 4
q1 = q2 = 4
p = 4

ν = α = 4
q1 = q2 = 20
p = 4

ν = α = 8
q1 = q2 = 50
p = 4

ν = α = 8
q1 = q2 = 50
p = 10

ν = α = 12
q1 = q2 = 35
p = 2

Figure 1. Bivariate pdf of Equation (7) for some parameter combinations.
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Proposition 2. The cross-product moment of Y = (Y1, Y2)
⊤ in Equation (7) can be expressed as

E[Ya
1 Yb

2 ] =
qa

1qb
2Γ
(

α
2 − a

p

)
Γ
(

α
2 − b

p

)
Γ
(

ν
2 + a

p

)
Γ
(

ν
2 + b

p

)
ca+bΓ2

(
ν
2
)
Γ2
(

α
2
)

×2F1

(
− a

p
,− b

p
;

ν

2
; ρ2
)

2F1

(
a
p

,
b
p

;
α

2
; ρ2
)

. (11)

Proposition 2 illustrates that the cross-product moment is the product of two Gaussian
hypergeometric functions. Corollary 1 is straightforward from Proposition 2, where the
expected value and variance of a marginal Pareto–Feller random variable Yk are presented
as well as the covariance and correlation between two marginal Pareto–Feller random
variables (Y1 and Y2).

Corollary 1. If Y = (Y1, Y2)
⊤, then it has a pdf according to Equation (7). According to

Proposition 2, we have the following:
1. E[Yi] = qi, i = 1, 2.

2. Var(Yi) = q2
i

[
Γ
(

ν
2 +

2
p

)
Γ
(

α
2 −

2
p

)
cΓ
(

ν
2 +

1
p

)
Γ
(

α
2 −

1
p

) − 1

]
if αp > 4 for i = 1, 2.

3.

Cov(Y1, Y2) =
qi2Γ

(
α
2 − 1

p

)
Γ
(

α
2 − 1

p

)
Γ
(

ν
2 + 1

p

)
Γ
(

ν
2 + 1

p

)
c2Γ2

(
ν
2
)
Γ2
(

α
2
)

×2F1

(
− 1

p
,− 1

p
;

ν

2
; ρ2
)

2F1

(
1
p

,
1
p

;
α

2
; ρ2
)

. (12)

4. Let ρY ≡ Corr(Y1, Y2). Thus, we have

ρY =
Γ2
(

ν
2 + 1

p

)
Γ2
(

α
2 − 1

p

)
Γ
(

ν
2
)
Γ
(

α
2
)
Γ
(

ν
2 + 2

p

)
Γ
(

α
2 − 2

p

)
− Γ2

(
ν
2 + 1

p

)
Γ2
(

α
2 − 1

p

)
×
[

2F1

(
− 1

p
,− 1

p
;

ν

2
; ρ2
)

2F1

(
1
p

,
1
p

;
α

2
; ρ2
)
− 1
]

. (13)

Figure 2 shows the correlation ρY for some density parameters. When ν and α increase,
ρY increases. More specifically, when p increases, the correlation ρY increases with small-to-
large values of ν and α. When ρ increases, ρY increases, as does its maximum value (from
0.05 to 0.80). Nevertheless, Corollary 1(4) illustrates that the correlation ρY does not depend
on either q or c.
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ρ = 0.25 ρ = 0.75 ρ = 0.90

p = 4

p = 8

p = 12

Figure 2. Correlation ρY of Corollary 1(4) for some parameter combinations.

3. Differential Entropy and Mutual Information Index
The differential entropy of Y is an information uncertainty measure [27]. The differen-

tial entropy of Y = (Y1, Y2)
⊤ with a pdf fY(y) is

H(Y) = −EY[log { fY(Y)}]

= −
∫ ∞

0

∫ ∞

0
fY(y) log fY(y)dy1dy2, (14)

and measures the contained information in Y based on its pdf’s parameters.
On the other hand, the mutual information index (MII) [28] between Y1 and Y2 under

a dependence assumption (ρ ̸= 0) is

M(Y) = E
[

log
{

fY(y1, y2)

fY1(y1) fY2(y2)

}]
=

∫ ∞

0

∫ ∞

0
fY(y1, y2) log

{
fY(y1, y2)

fY1(y1) fY2(y2)

}
dy1dy2. (15)

Proposition 3 ([29]). Let Yi ∼ PF(µ, qi/c, 1/p, ν/2, α/2). The entropy of Yi (i = 1, 2) is

H(Yi) = log

[
cp
qi

Γ( ν+α
2 )Γ( α

2 )

Γ( ν
2 )

]
+

(
1
p
− α

2

)[
ψ
(α

2

)
− ψ

(ν

2

)]
+

(
ν + α

2

)[
ψ

(
ν + α

2

)
− ψ

(ν

2

)]
,
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where ψ(X) =
d log Γ(x)

dx is the digamma function.

Proposition 4 ([30]). Let x = u/n. We have that

log (1 + x) = x +O(n−2),

as n → ∞.

Proposition 5. If Y = (Y1, Y2)
⊤ has the pdf given in Equation (7), then the following are true:

(a) EY[Y
p
i ] =

qp
i Γ( ν

2 +1)Γ( α
2 −1)

cpΓ( ν
2 )Γ( α

2 )
.

(b) EY[log(Yi)] =
1

p(1−ρ2)−(ν+α)/2

∞
∑

k=0

∞
∑

m=0

( ν
2 )k(

α
2 )mρ2k+2m

k!m!

{
ψ
(

ν
2 + k

)
− ψ

(
α
2 + m

)
− log

(
c
qi

)p}
.

Proposition 6. An approximation of the differential entropy of Y = (Y1, Y2)
⊤ is

H(Y) ≈ − log

 (cp)2

q1q2
Γ2( ν+α

2
)

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2


+
(

1 − pν

2

){
log
(

c2

q1q2

)
+EY[log Y1] +EY[log Y2]

}
+ cp

(
ν + α

2

){EY[Y
p
1 ]

qp
1

+
EY[Y

p
2 ]

qp
2

}
,

where EY[Y
p
i ] and EY[log Yi], i = 1, 2 are obtained from parts (a) and (b) of Proposition 5,

respectively.

From Equation (15), an MII between Y1 and Y2 is expressed in terms of the marginal and
joint differential entropies [28,31]. Then, using Propositions 3 and 6, the MII between Y1 and
Y2 can be approximated as follows:

M(Y) = H(Y1) +H(Y2)−H(Y)

≈ 2 log

[
cp

Γ( ν+α
2 )Γ( α

2 )

Γ( ν
2 )

]
− log(q1q2) + log

 (cp)2

q1q2
Γ2( ν+α

2
)

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2


−
(

1 − pν

2

){
log
(

c2

q1q2

)
+EY[log Y1] +EY[log Y2]

}
−cp

(
ν + α

2

){E[Yp
1 ]

qp
1

+
E[Yp

2 ]

qp
2

}
+

(
2
p
− α

)[
ψ
(α

2

)
− ψ

(ν

2

)]
+(ν + α)

[
ψ

(
ν + α

2

)
− ψ

(ν

2

)]
.

One particular case is when p = 1. Thus, using Corollary 1(1), we have

M(Y) ≈
(

1 +
ν

2

)
log
(

c2

q1q2

)
+ 2 log

[
Γ2( ν+α

2 )

Γ2( ν
2 )

]

−
(

ν + α

2

)
log (1 − ρ2) + (2 − α)

[
ψ
(α

2

)
− ψ

(ν

2

)]
+(ν + α)

[
ψ

(
ν + α

2

)
− ψ

(ν

2

)
− c
]

−
(

1 − ν

2

)
{EY[log Y1] +EY[log Y2]}. (16)



Axioms 2024, 13, 701 10 of 17

Figure 3 illustrates the behavior of the approximated MII obtained in Equation (16)
while assuming several values for Y and p = 1. We observed that M(Y) > 0 and increased
for qi → 0. As in the correlation function case (Figure 2), the MII increased when the
correlation parameter ρ increased.

1 2 3 4 5

1
2

3
4

5

a)

q1

q 2

2

4

6

8

1 2 3 4 5

1
2

3
4

5

b)

q1

q 2

6

8

10

12

Figure 3. Approximated mutual information index of Pareto–Feller distribution assuming p = 1,
α = 5, ν = 4, (a) ρ = 0.25, and (b) ρ = 0.75.

4. Concluding Remarks
We presented a representation of the Pareto–Feller distribution with a scale mixture

of two gamma random variables. The respective stochastic representation was obtained
by the quotient of a scale mixture of two gamma random variables. Then, the resulting
bivariate density considered the products of two confluent hypergeometric functions. In
particular, the probability distribution function, cumulative distribution function, moment
generation function, covariance function, correlation function, cross-product moments,
and approximations for the differential entropy and, as a consequence, the mutual in-
formation index were derived. Some numerical examples illustrated the behavior of the
provided expressions.

Some inferential aspects can be addressed in a future work, such as (1) a numerical
approach for optimization of the log-likelihood function; (2) the pseudo-likelihood method,
considering the optimization of an objective function which depends on a bivariate pdf;
(3) the model’s identifiability; (4) a Bayesian approach; and (5) an extention to the multivari-
ate case. We also encourage researching the consideration of a Pareto–Feller distribution in
modeling nonnegative bivariate data.
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Appendix A
Proof of Theorem 1. Following [10], note that the bivariate distribution of the gamma
random vector can be rewritten in terms of the hypergeometric function using the identity
0F1(; b; x) = Γ(b)x(1−b)/2 Ib−1(2

√
x), given by

fH(h) =
(h1h2)

δ/2−1e
− (h1+h2)

(1−ρ2)

Γ2
(

δ
2

)
(1 − ρ2)δ/2

0F1

(
δ

2
;

ρ2h1h2

(1 − ρ2)2

)
(A1)

Under the transformations w1 = v1r1 and w2 = v2r2 in Equation (A1) with the Jacobian
J((w1, w2) → (v1, v2)) = r1r2, and by using series expansion of the hypergeometric function
0F1, we have

fV(v) =
∫
R2
+

fW|R(w|r) fR(r)Jdr

=
∫
R2
+

(v1v2)
ν/2−1(r1r2)

(ν+α)/2−1e
− (v1r1+v2r2)

(1−ρ2) e
− (r1+r2)

(1−ρ2)

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)(ν+α)/2

×0F1

(
ν

2
;

ρ2v1v2r1r2

(1 − ρ2)2

)
0F1

(
α

2
;

ρ2r1r2

(1 − ρ2)2

)
dr

=
∞

∑
k=0

∞

∑
m=0

∫
R2
+

(v1v2)
ν/2−1(r1r2)

(ν+α)/2−1e
− (v1+1)r1

(1−ρ2) e
− (v2+1)r2

(1−ρ2)

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)(ν+α)/2k!m!

(
ν
2
)

k

(
α
2
)

m

×
(

ρ2(mh)v1v2r1r2

(1 − ρ2)2

)k(
ρ2r1r2

(1 − ρ2)2

)m

dr

=
(v1v2)

ν/2−1

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)(ν+α)/2

×
∞

∑
k=0

∞

∑
m=0

I(k, m)

k!m!
(

ν
2
)

k

(
α
2
)

m

(
ρ2v1v2

(1 − ρ2)2

)k(
ρ2

(1 − ρ2)2

)m

, (A2)

where, using Fubini’s theorem and Equation (3.381.4) in [32], we obtain

I(k, m) =
∫
R+

r(ν+α)/2+k+m−1
1 e

− (v1+1)r1
(1−ρ2) dri

∫
R+

r(ν+α)/2+k+m−1
2 e

− (v2+1)r2
(1−ρ2) dr2

= Γ2
(

ν + α

2
+ k + m

)[
(1 − ρ2)

v1 + 1

] ν+α
2 +k+m[

(1 − ρ2)

v2 + 1

] ν+α
2 +k+m

(A3)

In addition, by combining Equations (A3) and (A2), we obtain

fV12(v12) =
(v1v2)

ν/2−1Γ2( ν+α
2
)
[(v1 + 1)(v2 + 1)]−(ν+α)/2

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2

×
∞

∑
k=0

∞

∑
m=0

(
ν+α

2
)2

k+m

k!m!
(

ν
2
)

k

(
α
2
)

m

(
ρ2v1v2

(v1 + 1)(v2 + 1)

)k(
ρ2

(v1 + 1)(v2 + 1)

)m

=
(v1v2)

ν/2−1Γ2( ν+α
2
)
[(v1 + 1)(v2 + 1)]−(ν+α)/2

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2

×F4

(
ν + α

2
,

ν + α

2
;

ν

2
,

α

2
;

ρ2v1v2

(v1 + 1)(v2 + 1)
,

ρ2

(v1 + 1)(v2 + 1)

)
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Proof of Theorem 2. Under the transformations v1 = (y1/q1)
p and v2 = (y2/q2)

p in
Equation (5) with a Jacobian J((v1; v2) → (y1; y2)) = (p/q)2(y1y2/(q1q2))

p−1, the pdf of Y
is given by Equation (7).

Proof of Theorem 3. Using series expansion of the Appell hypergeometric function,
we obtain

FY(Y1 ≤ t1, Y2 ≤ t2)

=
p2cpν(q1q2)

−pν/2Γ2( ν+α
2
)

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2

t1∫
0

t2∫
0

(y1y2)
pν/2−1

[((
cy1

q1

)p
+ 1
)((

cy2

q2

)p
+ 1
)]− (ν+α)

2

× F4

ν + α

2
,

ν + α

2
;

ν

2
,

α

2
;

ρ2(c2y1y2)
p(q1q2)

−p((
cy1
q1

)p
+ 1
)((

cy2
q2

)p
+ 1
) ,

ρ2((
cy1
q1

)p
+ 1
)((

cy2
q2

)p
+ 1
)
dy

=
p2cpν(q1q2)

−pν/2Γ2( ν+α
2
)

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2

t1∫
0

t2∫
0

(y1y2)
pν/2−1

[((
cy1

q1

)p
+ 1
)((

cy2

q2

)p
+ 1
)]− (ν+α)

2

×
∞

∑
k=0

∞

∑
m=0

(
ν+α

2
)2

k+m

k!m!
(

ν
2
)

k

(
α
2
)

m

×

 ρ2(c2y1y2)
p(q1q2)

−p((
cy1
q1

)p
+ 1
)((

cy2
q2

)p
+ 1
)


k ρ2((
cy1
q1

)p
+ 1
)((

cy2
q2

)p
+ 1
)


m

dy

=
p2cpν(q1q2)

−pν/2Γ2( ν+α
2
)

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2

∞

∑
k=0

∞

∑
m=0

(
ν+α

2
)2

k+mρ2m I(k, m)

k!m!
(

ν
2
)

k

(
α
2
)

m

(
c2pρ2

(q1q2)p

)k

(A4)

Let z1 = yp
1 and z2 = yp

2 be transformations in Equation (A4), where 0 < zi < tp
i , i = 1, 2.

Using Fubini’s theorem and Equation (3.1941.1) in [32], we obtain

I(k, m) =
1
p2

tp
1∫

0

zν/2+k−1
1

[(
c
q1

)p
z1 + 1

]−( ν+α
2 +k+m)

dz1

×
tp
2∫

0

zν/2+k−1
2

[(
c
q2

)p
z2 + 1

]−( ν+α
2 +k+m)

dz2

=
(t1t2)

pν/2+pk

p2(ν/2 + k)2 2F1

(
ν + α

2
+ k + m,

ν

2
+ k;

ν

2
+ k + 1;−

(
ct1

q1

)p)
2F1

(
ν + α

2
+ k + m,

ν

2
+ k;

ν

2
+ k + 1;−

(
ct2

q2

)p)
(A5)

In addition, by combining Equations (A4) and (A5), we obtain Equation (8).

Proof of Proposition 1. For part (a), by using the definition of the mgf and series expansion
of the Appell hypergeometric function, we obtain

MY(t1, t2)

=
p2cpν(q1q2)

−pν/2Γ2( ν+α
2
)

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2

×
∫
R2
+

et1y1+t2y2 ypν/2−1
1 ypν/2−1

2

[((
cy1

q1

)p
+ 1
)((

cy2

q2

)p
+ 1
)]− (ν+α)

2
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×
∞

∑
k=0

∞

∑
m=0

(
ν+α

2
)2

k+m

k!m!
(

ν
2
)

k

(
α
2
)

m

×

 ρ2(c2y1y2)
p(q1q2)

−p((
cy1
q1

)p
+ 1
)((

cy2
q2

)p
+ 1
)


k ρ2((
cy1
q1

)p
+ 1
)((

cy2
q2

)p
+ 1
)


m

dy

=
p2cpν(q1q2)

−pν/2Γ2( ν+α
2
)

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2

×
∞

∑
k=0

∞

∑
m=0

(
ν+α

2
)2

k+mρ2m I(k, m)

k!m!
(

ν
2
)

k

(
α
2
)

m

(
c2pρ2

(q1q2)p

)k

. (A6)

Using Fubini’s theorem in Equation (A6), we obtain

I(k, m) =
∫ ∞

0
et1y1 y(pν/2)+pk−1

1

[(
cy1

q1

)p
+ 1
]−( (ν+α)

2 +k+m
)

dy1

×
∫ ∞

0
et2y2 y(pν/2)+pk−1

2

[(
cy2

q2

)p
+ 1
]−( (ν+α)

2 +k+m
)

dy2

=

[
1
p

( q
c

)p(ν/2+k) Γ(ν/2 + k)Γ(k + m + ((ν + α)/2)
Γ(m + ((ν + α)/2) + ν/2)

][
e(t1y1) − 1

(t1)2

]∣∣∣∣∣
y1=∞

y1=0

×
[

1
p

( q
c

)p(ν/2+k) Γ(ν/2 + k)Γ(k + m + ((ν + α)/2)
Γ(m + ((ν + α)/2) + ν/2)

][
e(t2y2) − 1

(t2)2

]∣∣∣∣∣
y2=∞

y2=0

=

[
1
p

( q
c

)p(ν/2+k) Γ(ν/2 + k)Γ(k + m + ((ν + α)/2)
Γ(m + ((ν + α)/2) + ν/2)

]2[
− 1
(ti)2

][
1 − 1

(ti)2

]
. (A7)

Note that if f (y) = etiyi and

g(y) = (yi)
(pν/2)+pk−1

[(
c
qi

)p
(yi)

p + 1
]−(k+m+(ν+α)/2)

dyi,

then we can apply integration by substitution for
∫ ∞

0 f (y)g(y)dy. With the change in
variables ui = etiyi ⇒ dui = tietiyi , and by letting

dvi = (yi)
(pν/2)+pk−1

[(
c
qi

)p
(yi)

p + 1
]−(k+m+(ν+α)/2)

dyi,

then vi =
∫ ∞

0 dvi, where Equation (3.241.4.11) in [32] was used with ti < 0, i = 1, 2. By
combining Equations (A6) and (A7), we obtain

MY(t1, t2) =

(cp)2

q1q2
Γ2( ν+α

2
)

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2

×
∞

∑
k=0

∞

∑
m=0

(
ν+α

2
)

k+m

(
ν+α

2
)

k+m(
ν
2
)

k

(
α
2
)

mk!m!
ρ4km(c2/q1q2)

(pν/2+pk−1)

×
[

1
p

( q
c

)p(ν/2+k) Γ(ν/2 + k)Γ(k + m + ((ν + α)/2)
Γ(m + ((ν + α)/2) + ν/2)

]2

×
[
− (t1)

2 − 1
(t1)4

][
− (t2)

2 − 1
(t2)4

]
.

For part (b), and by following the proof of part (a), the proof of the characteristic
function of Y is straightforward.
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Proof of Proposition 2. By the definition of cross-product moment, and using series ex-
pansion of the Appell hypergeometric function of the fourth kind, we obtain

E(Ya
1 Yb

2 )

=
p2cpν(q1q2)

−pν/2Γ2( ν+α
2
)

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2

∫
R2

+

ypν/2+a−1
1 ypν/2+b−1

2

[((
cy1
q1

)p
+ 1
)((

cy2
q2

)p
+ 1
)]− (ν+α)

2

× F4

 ν + α

2
,

ν + α

2
;

ν

2
,

α

2
;

ρ2(c2y1y2)
p(q1q2)

−p((
cy1
q1

)p
+ 1
)((

cy2
q2

)p
+ 1
) ,

ρ2((
cy1
q1

)p
+ 1
)((

cy2
q2

)p
+ 1
)
dy

=
p2cpν(q1q2)

−pν/2Γ2( ν+α
2
)

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2

×
∫
R2

+

ypν/2+a−1
1 ypν/2+b−1

2

[((
cy1
q1

)p
+ 1
)((

cy2
q2

)p
+ 1
)]− (ν+α)

2

×
∞

∑
k=0

∞

∑
m=0

(
ν+α

2
)2

k+m
k!m!

(
ν
2
)

k
(

α
2
)

m

×

 ρ2(c2y1y2)
p(q1q2)

−p((
cy1
q1

)p
+ 1
)((

cy2
q2

)p
+ 1
)


k ρ2((
cy1
q1

)p
+ 1
)((

cy2
q2

)p
+ 1
)


m

dy

=
p2cpν(q1q2)

−pν/2Γ2( ν+α
2
)

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2

∞

∑
k=0

∞

∑
m=0

(
ν+α

2
)2

k+mρ2m I(k, m)

k!m!
(

ν
2
)

k
(

α
2
)

m

(
c2pρ2

(q1q2)p

)k

, (A8)

Using Fubini’s theorem and Equation (3.241.411) from [32] in Equation (A8), we obtain

I(k, m) =
∫
R+

ypν/2+a+pk−1
1

[(
cy1

q1

)p
+ 1
]−( ν+α

2 +k+m)
dy1

×
∫
R+

ypν/2+b+pk−1
2

[(
cy2

q2

)p
+ 1
]−( ν+α

2 +k+m)
dy2

=
Γ
(

ν
2 + a

p + k
)

Γ
(

α
2 − a

p + m
)

Γ
(

ν
2 + b

p + k
)

Γ
(

α
2 − b

p + m
)

p2Γ2
(

ν+α
2 + k + m

)
×
( q1

c

) pν
2 +a+pk( q2

c

) pν
2 +b+pk

. (A9)

By combining Equations (A8) and (A9), we obtain

E(Ya
1 Yb

2 ) =
qa

1qb
2Γ
(

ν
2 + a

p

)
Γ
(

ν
2 + b

p

)
Γ
(

α
2 − a

p

)
Γ
(

α
2 − b

p

)
ca+bΓ2

(
ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−

ν+α
2

×
∞

∑
k=0

∞

∑
m=0

(
ν
2 + a

p

)
k

(
ν
2 + b

p

)
k

(
α
2 − a

p

)
m

(
α
2 − b

p

)
m

k!m!
(

ν
2
)

k

(
α
2
)

k
ρ2(k+m)

=
qa

1qb
2Γ
(

ν
2 + a

p

)
Γ
(

ν
2 + b

p

)
Γ
(

α
2 − a

p

)
Γ
(

α
2 − b

p

)
ca+bΓ2

(
ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−

ν+α
2

×2F1

(
ν

2
+

a
p

,
ν

2
+

b
p

;
ν

2
; ρ2
)

2F1

(
α

2
− a

p
,

α

2
− b

p
;

α

2
; ρ2
)
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Finally, using a Euler transformation, we have Equation (11).

Proof of Proposition 5. For part (a), we have

EY(Y
p
i ) =

p2cpν(qiqj)
−pν/2Γ2( ν+α

2
)

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2

×
∞

∑
k=0

∞

∑
m=0

(
ν+α

2
)2

k+mρ2m I(k, m)

k!m!
(

ν
2
)

k

(
α
2
)

m

(
c2pρ2

(qiqj)p

)k

. (A10)

By using Fubini’s theorem and Equation (3.241.411) from [32] in Equation (A10), we obtain

I(k, m) =
∫
R+

ypν/2+pk+p−1
i

[(
cyi
qi

)p
+ 1
]−( ν+α

2 +k+m)
dyi

×
∫
R+

ypν/2+pk−1
j

[(
cyj

qj

)p

+ 1

]−( ν+α
2 +k+m)

dyj

=
Γ
(

ν
2 + k + 1

)
Γ
(

α
2 + m − 1

)
Γ
(

ν
2 + k

)
Γ
(

α
2 + m

)
p2Γ2

(
ν+α

2 + k + m
) ( qi

c

) pν
2 +pk+p

( qj

c

) pν
2 +pk

. (A11)

By combining Equations (A10) and (A11), we obtain

EY(Y
p
i ) =

qp
i Γ
(

ν
2 + 1

)
Γ
(

α
2 − 1

)
cpΓ
(

ν
2
)
Γ
(

α
2
)
(1 − ρ2)−

ν+α
2

×
∞

∑
k=0

∞

∑
m=0

(
ν
2 + 1

)
k

(
ν
2
)

k

(
α
2 − 1

)
m

(
α
2
)

m
k!m!

(
ν
2
)

k

(
α
2
)

k
ρ2(k+m)

=
qp

i Γ
(

ν
2 + 1

)
Γ
(

α
2 − 1

)
cpΓ
(

ν
2
)
Γ
(

α
2
)
(1 − ρ2)−

ν+α
2

2F1

(ν

2
+ 1,

ν

2
;

ν

2
; ρ2
)

2F1

(α

2
− 1,

α

2
;

α

2
; ρ2
)

.

Using the identity 2F1(a, b; b; x) = (1 − x)−a in the last equality, we obtain

EY(Y
p
i ) =

qp
i Γ
(

ν
2 + 1

)
Γ
(

α
2 − 1

)
cpΓ
(

ν
2
)
Γ
(

α
2
) .

For part (b), we have

EY(log Yi) =
p2cpν(qiqj)

−pν/2Γ2( ν+α
2
)

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2

×
∞

∑
k=0

∞

∑
m=0

(
ν+α

2
)2

k+mρ2m I(k, m)

k!m!
(

ν
2
)

k

(
α
2
)

m

(
c2pρ2

(qiqj)p

)k

. (A12)

Using Fubini’s theorem and Equation (3.241.411) from [32] in Equation (A12), we obtain

I(k, m) =
∫
R+

log(yi)y
pν/2+pk−1
i

[(
cyi
qi

)p
+ 1
]−( ν+α

2 +k+m)
dyi

×
∫
R+

ypν/2+pk−1
j

[(
cyj

qj

)p

+ 1

]−( ν+α
2 +k+m)

dyj

=
Γ2( ν

2 + k
)
Γ2( α

2 + m
)

p3Γ2
(

ν+α
2 + k + m

) ( qi
c

) pν
2 +pk

( qj

c

) pν
2 +pk
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×
{

ψ
(ν

2
+ k
)
− ψ

(α

2
+ m

)
− log

(
c
qi

)p}
. (A13)

By combining Equations (A12) and (A13), we obtain

EY(log Yi) =
1

p(1 − ρ2)−(ν+α)/2

×
∞

∑
k=0

∞

∑
m=0

(
ν
2
)

k

(
α
2
)

mρ2k+2m

k!m!

{
ψ
(ν

2
+ k
)
− ψ

(α

2
+ m

)
− log

(
c
qi

)p}
.

Proof of Proposition 6. In evaluating the density of Theorem 2 in Equation (14), we have

H(Y)

= − log

 (cp)2

q1q2
Γ2( ν+α

2
)

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2

−
( pν

2
− 1
)[

log
(

c2

q1q2

)
+EY[log Y1] +EY[log Y2]

]

+

(
ν + α

2

){
EY

[
log
((

cy1

q1

)p
+ 1
)]

+EY

[
log
((

cy2

q2

)p
+ 1
)]}

−EY

log F4

ν + α

2
,

ν + α

2
;

ν

2
,

α

2
;

ρ2(c2y1y2)
p(q1q2)

−p((
cy1
q1

)p
+ 1
)((

cy2
q2

)p
+ 1
) ,

ρ2((
cy1
q1

)p
+ 1
)((

cy2
q2

)p
+ 1
)

.

By assuming in the last Appell hypergeometric function that its sum converges at the
first term (i.e., when k = m = 0) [14], we have that EY[log F4(·)] ≈ 0. Aside from this,
considering Proposition 4, we have that

EY

[
log
((

cYi
qi

)p
+ 1
)]

≈
(

c
qi

)p
EY[Y

p
i ], i = 1, 2.

Then, the differential entropy of Y can be approximated by

H(Y) ≈ − log

 (cp)2

q1q2
Γ2( ν+α

2
)

Γ2
(

ν
2
)
Γ2
(

α
2
)
(1 − ρ2)−(ν+α)/2


−
( pν

2
− 1
)[

log
(

c2

q1q2

)
+EY[log Y1] +EY[log Y2]

]
+ cp

(
ν + α

2

){EY[Y
p
1 ]

qp
1

+
EY[Y

p
2 ]

qp
2

}
.

This concludes the proof.
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