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Abstract: Stock market indices are important tools to measure and compare stock market performance.
The Selective Stock Price (SSP) index reflects fluctuations in a set value of financial instruments of
Santiago de Chile’s stock exchange. Stock indices also reflect volatility linked to high uncertainty or
potential investment risk. However, economic shocks are altering volatility. Evidence of long memory
in SSP time series also exists, which implies long-term persistence. In this paper, we studied the
volatility of SSP time series from January 2010 to September 2023 using fractionally heteroskedastic
models. We considered the Autoregressive Fractionally Integrated Moving Average (ARFIMA)
process with Generalized Autoregressive Conditional Heteroskedasticity (GARCH) innovations—the
ARFIMA-GARCH model—for SSP log returns, and the fractionally integrated GARCH, or FIGARCH
model, was compared with a classical GARCH one. The results show that the ARFIMA-GARCH
model performs best in terms of volatility fit and predictive quality. This model allows us to obtain a
better understanding of the observed volatility and its behavior, which contributes to more effective
investment risk management in the stock market. Moreover, the proposed model detects the influence
volatility increments of the SSP index linked to external factors that impact the economic outlook,
such as China’s economic slowdown in 2012 and the subprime crisis in 2008.

Keywords: selective stock price; stock markets; volatility; GARCH model; long memory; ARFIMA
model; FIGARCH model

1. Introduction
Stock market indices are useful for measuring and comparing stock market per-

formance, both in general and in specific economic sectors. These indices reflect the
fluctuations in a set value of financial instruments that are part of these indices. Instru-
ments include stocks, debt securities, and other types of assets. In the study of stock
market indices, intrinsic value and volatility of the index carry key importance. Moreover,
understanding volatility indicators of financial variables is essential for adequate risk man-
agement both for market participants and regulators (Alfaro and Silva 2008). Volatility
is a fundamental concept in financial sciences that reflects uncertainty or risk associated
with investments, with high (low) volatility indicating high (low) risk (Andersen and
Teräsvirta 2009). On the other hand, long memory is a key concept for modeling volatil-
ity or heteroskedasticity in stock markets or other macroeconomic indices in time series
analysis (Ding et al. 1993; Palma 2007), but econometric applications have not considered
long memory and volatility dependency.

The main stock market index of Santiago de Chile’s stock exchange is the Selective
Stock Price (SSP) index1. This index represents the performance of 40 stocks with the
highest trading volume and liquidity on the Chilean stock market and helps in analyz-
ing the general behavior of the market. Yet, SSP index literature is limited, with one
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highlight being a Central Bank study Alfaro and Silva (2008), which analyzes SSP volatil-
ity using a Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model
(Bollerslev 1986). The results showed that during periods of turbulence or high volatility,
the historic parameters of the SSP index became less relevant, which renders short-term
information more important. However, it is necessary to consider that the correlation of
SSP returns is positive, like the stock indices that make up the Latin American integrated
market (Aragón 2017).

1.1. Literature Review
Stock market time series often present non-linear behavior. Strong evidence exists

regarding a large number of financial time series that shows stylized facts, such as clusters of
observations (original time series or their squares) with high variability followed by clusters
with low variability but strong autocorrelation (Palma 2016). Hence, it is necessary to use
heterokedastic models when the conditional variance of past observations is not constant.

Given the importance of modeling the volatility of financial time series, Engle (1982)
proposed an Autoregressive Conditional Heteroskedasticity (ARCH) econometric model
to analyze high-volatility, non-stationary time series data, i.e., data where error variance
changes over time. The ARCH model assumes that variance is conditioned on past obser-
vations but does not consider the influence of past volatility. Bollerslev (1986) extended the
ARCH model to a GARCH one. In addition to square observations, the GARCH model
also includes the past values of conditioned variance, allowing researchers to capture the
influence of conditioned volatility of past periods in the estimation of conditional variance
of a current period. Alfaro and Silva (2008) examined some volatility measures of the SSP
index using the GARCH model, among others, and found that the historical parameters of
SSP time series became less relevant during high-volatility periods, providing more short-
term information. In addition, when intra-day information was incorporated, estimated
volatility was more efficient than that considering only the closing price of the stock.

Yet, long memory in the time series context is crucial. This concept refers to long-
term persistence in time series data, with past observations impacting future ones
(Granger and Joyeux 1980; Hosking 1981). Long-term persistence manifests as autocor-
relation with slow decaying, persistent fluctuations, or prolonged heteroskedastic vari-
ations. Long memory has been observed in several scientific fields, such as hydrology,
geophysics, and economics (Box et al. 2015; Contreras-Reyes 2022; Contreras-Reyes and
Palma 2013). With respect to financial economics and stock market indices, certain asset
performance in speculative markets was approximately uncorrelated but not indepen-
dent over time (Baillie et al. 1996b). The world’s main stock market indices—the S&P
500 (New York), EOE (Amsterdam), DAX (Frankfurt), and Hang Seng (Hong Kong)—
tend to reject the unit root test, indicating that these time series are non-stationary and,
therefore, a search for alternatives such as fractionally integrated models is required
(Gil-Alana 2006). Fractional integration allows researchers to address the non-stationarity
of time series, enables capturing of the long-memory presence of the process, and reduces
bias in predictions. More recently, Khumalo et al. (2023) considered other extensions of
the GARCH model (FIAPARCH and HYGARCH) and the mentioned FIGARCH model to
quantify the Johannesburg stock market value at risk.

Another way to model long memory involves Autoregressive Fractionally Integrated
Moving Average (ARFIMA) models (Contreras-Reyes and Palma 2013; Palma 2007), which
estimate the mean of the process using the short-term memory through an Autoregressive
Moving Average (ARMA) structure and the long-term memory through fractionally inte-
grated differencing. Nevertheless, Baillie et al. (1996b) introduced an alternative approach to
modeling long memory, involving the Fractionally Integrated Generalized Auto-Regressive
Conditionally Heteroskedastic (FIGARCH) model. In contrast to the ARFIMA model used
for the mean of the process, the FIGARCH model captures dependency of process volatility
through innovations. This approach is useful for modeling long-term dependencies in
absolute and square returns of financial assets. Bollerslev and Mikkelsen (1996) analyzed
several financial assets of US stock markets, using fractionally exponential GARCH models
to characterize long-term dependencies in their volatility. They found that the S&P500 index
produced an optimal fit to a fractionally integrated process with mean reverse, such as the
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FIGARCH model. This finding highlighted that considering the long-term persistence and
regression mean trend in modeling financial asset volatilities is important.

Another way to model long memory and heteroskedasticity in time series involves
an ARFIMA-GARCH model (Baillie et al. 1996a), which combines an ARFIMA model for
the process and a GARCH one for the innovations. This approach is useful to analyze the
relationships between the conditional mean and variance of the long-memory process, the
slow decay of autocorrelations, and heteroskedasticity. In addition, Baillie et al. (1996a)
studied inflation in 10 countries, modeling this index using an ARFIMA-GARCH model
and the estimated volatility via quasi-maximum log-likelihood estimation (QMLE) and
based on Student-t innovations. The results showed that shocks or inflation changes
include long memory and persistence over time. It was also observed that changes are
not permanent, despite long-term influence, as inflation tends to stabilize around a more
stable average.

1.2. Study Objectives
Given that the GARCH model proposed by Alfaro and Silva (2008) does not include

fractional parameters, unlike FIGARCH or ARFIMA-GARCH, it is limited to simultane-
ously modeling the long-memory and volatility properties in the SSP index. Considering
the importance of stock market indices, the motivation for this study is to create an SSP
volatility forecasting method and obtain a tool that allows for better control of market risk
through implicit modeling of the main index of Chile’s stock market. The main objective
of this study is to compare the efficiency of fractional models (ARFIMA-GARCH and
FIGARCH) in terms of volatility fit performance and predictive quality related to the SSP
index with a classical GARCH one.

Considering the foundational theories of the FIGARCH model provided by Bollerslev
and Mikkelsen (1996) and the extension of the GARCH model given by the ARFIMA-
GARCH model developed by Baillie et al. (1996a), we fitted an SSP log returns time series
(January 2010–September 2023) with the GARCH, ARFIMA-GARCH, and FIGARCH mod-
els using the QMLE method and evaluated the fit quality of these models using the Akaike
(AIC) and Bayesian (BIC) information criteria (see, e.g., Chávez et al. 2023) and residual di-
agnostic methods using the autocorrelation function (ACF) (see, e.g., Contreras-Reyes and
Palma 2013) and the weighted Ljung–Box test (Fisher and Gallagher 2012). Subsequently,
we evaluated the predictive quality of the best model through cross validation to estimate
implicit SSP volatility.

This paper is organized as follows. Section 2 presents a description of the SSP index
data and log returns. Section 3 presents the methodology, including the GARCH, ARFIMA-
GARCH, and FIGARCH models, information criteria, residual diagnostic methods, and
Student-t distribution for innovations. Sections 4 and 5 present the main results and
volatility estimation, respectively. Finally, the discussion and conclusions are presented in
Section 6.

2. Selective Stock Price Index
In financial sciences, time series are provided by indices and asset price evolution

(Nelson 1991). A common topic is the asset price evolution of the SSP index. Nevertheless,
several studies have focused on asset returns instead of asset prices. Campbell et al. (1998)
and Tsay (2005) argued for the use of returns, as they reflect the full summary and freedom
of scales about a possible investment opportunity and because return time series are
easier to handle than asset time due to their more adequate statistical properties. While
many ways to define asset performance exist, a simplified return definition is given by
the following:

Pt

Pt−1
− 1 =

Pt − Pt−1

Pt−1
, (1)

where Pt is the index price at time t. However, logarithmic transformation of the original
time series is often used in stock market index analysis to stabilize process variance. In



J. Risk Financial Manag. 2024, 17, 401 4 of 17

addition, differentiating the logarithmic term stabilizes the time series mean to obtain the
log returns given by the following:

rt = log
(

Pt

Pt−1

)
= log(Pt)− log(Pt−1). (2)

We assigned the SSP index to Pt. SSP value was determined based on capital variations
in each asset of this index using the relative weight of each one. Major companies that
are part of this index include SQM-B, Banco de Chile, Santander, and Copec. The closing
prices of the SSP index were obtained from Central Bank of Chile webpage (https://www.
bcentral.cl/, accessed on 1 April 2023). Figure 1 illustrates the SSP index between 2 January
2010 and 30 September 2023. Crucially, the SSP index is provided for working days only,
but if missing values were estimated using interpolation techniques, an autocorrelation
of lag 7 (days) and related to weekends emerged. Hence, this study excluded the missing
days from the SSP time series to avoid bias in model fits. The Augmented Dickey–Fuller
test (Cheung and Lai 1995) confirmed that log(Pt) is non-stationary, with a Dickey–Fuller
statistic of −2.6054 (with a lag order of 14 and a p value of 0.322); i.e., we cannot reject the
null hypothesis of non-stationarity because the p value is not smaller than 0.05. Therefore,
differentiation (2) is required for the next analysis. SSP log returns are also presented in
Figure 1, where the COVID-19 pandemic period is highlighted. However, other crises
appear in log-returns, such as China’s economic slowdown in 2012 and the subprime crisis
in 2008.

0 500 1000 1500 2000 2500 3000 3500

30
00

35
00

40
00

45
00

50
00

55
00

60
00

time (t)

S
S

P
 in

de
x

0 500 1000 1500 2000 2500 3000 3500

time (t)

S
S

P
 lo

g−
re

tu
rn

s

−
0.

15
−

0.
1

−
0.

05
0

0.
05

0.
1

Figure 1. Selective Stock Price index (top) and log returns (bottom), 2 January 2010 to 30 September 2023.

An analysis of long-memory presence using the sample ACF provided in Figure 2,
also for absolute (|rt|) and square (r2

t ) values of SSP log-returns, follows. The sample
ACF provides autocorrelations close to zero or close to Bartlett’s bands (95% confidence
level), suggesting that log returns are uncorrelated. However, considering the absolute
and square log returns, both plots provide relevant information for volatility modeling,
because GARCH models could not capture long-memory dependency in correlations. Still,

https://www.bcentral.cl/
https://www.bcentral.cl/
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both plots that sample ACF values exceeded Bartlett’s bands at the 95% confidence level,
even though the values were concentrated between 0.2 and 0.4, which was relatively low.
Additionally, the sample ACF is only a graphical tool for absolute and square SSP log
returns and does not guarantee significance of the fractional differencing parameter of
fractional GARCH models.
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Figure 2. Sample autocorrelation function of SSP log-returns (top). Absolute value of SSP log returns
(middle) and squares of SSP log returns (bottom).

Distribution associated with innovations is also key for financial time series modeling.
Palma (2016) found that financial time series tend to exhibit heavy tails and excess of
kurtosis (more kurtosis than Gaussian distribution) in innovations. This phenomenon is
observed in SSP log returns, as illustrated in Figure 3, which shows an excess of leptokur-
tosis. Therefore, a Student-t distribution could be used for GARCH innovation modeling
(Baillie et al. 1996b; Chávez et al. 2023), as a Student-t distribution provides more flexibility
for heavy-tailed data fit, commonly observed in financial time series. This approach is
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necessary to obtain estimated parameters with smaller bias and more precise predictions
for SSP volatility.

SSP log−returns

F
re

qu
en

cy

−0.15 −0.10 −0.05 0.00 0.05 0.10

0
20

0
40

0
60

0
80

0
10

00

Figure 3. Histogram of SSP log returns (2 January 2010 to 30 September 2023).

3. Methods
3.1. ARMA Model

A process {yt}, t ∈ Z follows an ARMA model of autoregressive and moving-average
orders p and q, respectively, as follows:

ϕ(B)yt = θ(B)ϵt (3)

where ϕ(B) = 1+ ϕ1B + . . . + ϕpBp and θ(B) = 1+ θ1B + . . . + θqBq are the autoregressive
and moving-average polynomial operators, respectively, and B is the backshift operator. In
addition, ϕ(B) and θ(B) have no common roots (Box et al. 2015). Innovations of model (3)
are assumed white noise, {ϵt} ∼ RB(0, σ2). The model (3) can be written as follows:(

1 −
p

∑
i=1

ϕiBi

)
yt =

(
1 +

q

∑
j=1

θjBj

)
ϵt, (4)

and is denoted yt ∼ ARMA(p, q). ARMA models are based on stationarity conditions in
the mean, variance, and autocovariance, as the mean and variance are finite and constant
with respect to t. The autocovariance function does not depend on time; only on the number
of lagged periods (lags).

3.2. ARFIMA Model
ARFIMA is a long-memory class model that accounts explicitly for the persistence

and long-term correlations of time series. The general expression for this model denotes
yt ∼ ARFIMA(p, d, q) and is given by the following:

ϕ(B)yt = θ(B)(1 − B)−dϵt, (5)

where ϕ(B) and θ(B) are defined in the latter section. d ∈ (−1, 1/2) is the fractional
differencing operator given by binomial expansion

(1 − B)−d =
∞

∑
j=0

ηjBj = η(B), (6)

with

ηj =
Γ(j + d)

Γ(j + 1)Γ(d)
,

and Γ(·) is the common gamma function. If polynomials ϕ(B) and θ(B) have no common
roots and d ∈ (−1, 1

2 ), the stationarity, causality, and invertibility of the process can
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be established (Contreras-Reyes and Palma 2013). The estimation method for ARFIMA
parameters is based on the Whittle estimator (Contreras-Reyes and Palma 2013).

3.3. GARCH Model
The ARCH model considers that variance in time series can change and is conditioned

by past observations. An ARCH model of order r, denoted as ARCH(r), is defined at
discrete time t by the following:

yt = σtϵt,

σ2
t = α0 +

r

∑
i=1

αiy2
t−i,

(7)

where σ2
t = E[y2

t |yt−1, yt−2, . . .] is the conditional variance of process {yt} and denotes
the expected value of y2

t , conditioned to the set of past observations {yt−1, yt−2, . . .}. In
addition, α0 and αi, i = 1, . . . , r are positive real values, and condition ∑r

i=1 αi < 1 ensures
the stationarity of process {yt}. {ϵt} is a sequence of random variables that are independent
and identically distributed (i.i.d.); i.e., white noise.

On the other hand, the GARCH model also considers past observations modeled by
autoregressive parameters. However, it also includes the dependency of past variance
values, which implies the presence of heteroskedasticity as a function of observed time.
Therefore, a GARCH model is an extension of an ARCH one, given as follows:

yt = σtϵt,

σ2
t = α0 +

r

∑
j=1

αjy2
t−j +

s

∑
j=1

β jσ
2
t−j,

(8)

where in the ARCH case (Engle 1982), σ2
t = E[y2

t |yt−1, yt−2, . . .] is the conditional variance
of process {yt}. The coefficients of the GARCH model, α0, α1, . . . , αr and β0, β1, . . . , βs, are
positive real numbers, and {ϵt} is an i.i.d. sequence of random variables. Under stationary
conditions, the parameters of the GARCH process accomplish ∑r

j=1 αj + ∑s
j=1 β j < 1.

Despite being an effective tool to model heteroskedasticity in a financial time series,
the GARCH model does not address the possible existence of long-term dependency in
the process.

3.4. ARFIMA-GARCH Model
This approach combines long-memory process modeling using an ARFIMA model

and heteroskedastic modeling with a GARCH one. The process is defined at a discrete time,
denoted as ARFIMA(p, d, q)-GARCH(r, s) and is given as follows:

ϕ(B)yt = θ(B)(1 − B)−dϵt,
ϵt = etσt,

σ2
t = α0 +

r

∑
j=1

αjϵ
2
t−j +

s

∑
j=1

β jσ
2
t−j,

where σ2
t = E[ϵ2

t |ϵt−1, ϵt−2, . . .] is the conditional variance of process {ϵt}. The coefficients
of a GARCH model, α1, . . . , αr and β1, . . . , βs, are positive real values, such that ∑r

j=1 αj +

∑s
j=1 β j < 1 (for stationarity of process ϵt), and {et} is an i.i.d. sequence of random variables

with zero mean and unit variance (Baillie et al. 1996b; Ramŕez-Parietti et al. 2021).

3.5. FIGARCH Model
Given that squares of financial time series present similar or higher-than-return au-

tocorrelations, the reduction in memory that affects the squares of the ARFIMA-GARCH
processes might not work, implying other approaches need to be studied to directly model
the strong dependency of return squares (Palma 2007). One option is the FIGARCH model,
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which proved efficient for several financial assets such as stocks, stock indices, and ex-
change rates. The model allows capturing of the correlation persistence in volatility, making
it a useful tool to understand financial risk.

To define the FIGARCH model, first consider the variance definition of the GARCH
model given in (8), which allows us to define the following polynomials:

α(B) =
p

∑
j=1

αjBj y β(B) =
q

∑
j=1

β jBj.

Considering the latter polynomials, an initial model for yt is proposed, given as follows:

[1 − α(B)− β(B)]y2
t = α0 + [1 − β(B)]νt, (9)

where νt = y2
t − σ2

t . On the left side of Equation (9), the model is rewritten as an integrated
autoregressive one as follows:

(1 − B)γ(B)y2
t = α0 + [1 − β(B)]νt, (10)

where

γ(B) =
m−1

∑
j=1

γjBj,

and m = max{p, q}. Note in (10), a whole differentiation of lag 1 is considered. Model (10)
is defined as IGARCH(r, s).

Finally, a FIGARCH(r, d, s) model developed by Baillie et al. (1996b) is proposed, which
includes a fractionary parameter d by replacing term (1− B) with (1− B)d in (10) to obtain

γ(B)y2
t = (1 − B)−d(α0 + [1 − β(B)]νt), (11)

where (1 − B)−d is obtained in (6).
In addition, a common parameter estimation method for heteroskedastic models is the

QMLE option (Baillie et al. 1996b). The log-likelihood function of a heteroskedastic model,
assuming that innovations are normally distributed, is as follows:

L(Ω) = −1
2

log(2π)− 1
2

n

∑
t=1

[
log(σ2

t ) +
ϵ2

t
σ2

t

]
, (12)

where n is the number of observations and Ω = (d, α0, α1, . . . , αp, β1, . . . , βp) for FIGARCH.
Therefore, QMLE Ω̂ is obtained by maximizing Equation (12). It is possible to modify σ2

t
based on the GARCH variance of (8) for parameter set Ω = (α0, α1, . . . , αp, β1, . . . , βp).

In several financial time series, the innovations of the heteroskedastic models could
be assumed as leptokurtic and standardized (Chávez et al. 2023; Ghalanos 2023). In
this sense, the GARCH model with Student-t innovations was used for the first time by
Bollerslev (1987) as an alternative to Gaussian distribution. The location µ, scale τ, and
heavy-tails parameters were considered for Student-t and directly modeled based on the
degree of freedom parameter ν in the following form:

f (x) =
Γ
(

ν+1
2

)
√

τνπΓ
(

ν
2
)(1 +

(x − µ)2

τν

)−( ν+1
2 )

. (13)

It is possible to obtain the standardized version via substitution z = (x − µ)/τ in (13).
Student-t is a unimodal and symmetric distribution, where the first moment of X is µ, and
the variance is as follows:

Var(x) = τ
ν

(ν − 2)
, (14)

with ν > 2.
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3.6. Model Selection
In this section, we consider two criteria commonly used for model selection (see, e.g.,

Chávez et al. 2023). The first is AIC, which is defined over a set of K competitor model
indices by k, {Mk}, k = 1, 2, . . . , K and given by the following:

AIC(MK) = −2L(Ω̂k) + 2g, (15)

where g is the number of parameters of model Mk, L(Ω̂k) is the associated log-likelihood
function of the kth model, and Ω̂k is the set of estimated parameters. The best model is the
one with the lowest AIC.

The second criterion is BIC, which is also defined for set {Mk} as follows:

BIC(Mk) = −2L(Ω̂k) + g log(n). (16)

The best model is the one with the lowest BIC, as it indicates the optimal balance between
the goodness of fit in data and the number of parameters (model complexity). For sample
size n > 8, BIC strongly penalizes the increment of the number of parameters in the model
compared with AIC.

4. Results
Here, we evaluate the models and determine if fractionally integrated heteroskedastic

models provide a better fit of volatility of the SSP index compared with non-fractional
models. We considered the log-returns of the closing prices of the SSP index described in
Section 2. The estimation, diagnostic, and prediction procedures of the models were carried
out using R software (R Core Team 2023), using the Rugarch package (Ghalanos 2023).

4.1. GARCH Model
A first step was the identification of the optimal order for the GARCH model to be

fitted onto SSP time series, which involved comparing AIC and BIC values (Table 1), with
the GARCH(1, 1) model emerging as the most appropriate one.

Table 1. AIC and BIC of GARCH models fitted to SSP time series and for several orders.

r s AIC BIC

1 1 −6.5820 −6.5648
1 2 −6.5817 −6.5628
1 3 −6.5828 −6.5622
2 1 −6.5813 −6.5624
2 2 −6.5811 −6.5604
2 3 −6.5828 −6.5603
3 1 −6.5806 −6.5600
3 2 −6.5804 −6.5580
3 3 −6.5822 −6.5580

Considering the optimal GARCH(1, 1) model, the estimated parameters appear in
Table 2. All of the estimated parameters were significant, and α1 + β1 = 0.983 < 1, fulfilling
the stationarity requirement. Additionally, ν̂6, which was relatively low (<10), indicated
that the innovations were fitted by Student-t with heavy tails (as observed in Figure 3,
where the SSP log returns clearly present heavy tails). This result indicated that it was a
better fit of innovations with a Student-t distribution instead of a Gaussian one.
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Table 2. Estimated parameters of GARCH(1, 1) model for SSP log returns.

Estimates Std. Error t Value p Value

α0 0.002 0.003 0.643 0.520
α1 0.099 0.048 2.080 0.038
β1 0.885 0.049 17.901 <0.01
ν 5.936 0.177 33.499 <0.01

The diagnostic analysis for the selected GARCH model innovations involved a his-
togram of residuals (Figure 4), which show leptokurtic behavior, suggesting the Student-t
distribution provided a better fit than the Gaussian one. Moreover, the sample ACF
indicated small autocorrelations (close to Bartlett’s bands of the 95% confidence level),
validating the white noise hypothesis. But, the sample ACF exceeded the Bartlett band
limits for square residuals. Table 3 illustrates the weighted Ljung–Box test results, where
for all lags the white noise hypothesis were rejected at the 95% confidence level. On the
contrary, no evidence exists for rejecting the white noise hypothesis for square residuals.
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zseries

Pr
ob

ab
ili

ty

−  6 −  4 −  2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Median:  0.02 | Mean:  0.00923

G
A

RC
H

 m
od

el
 : 

 s
G

A
RC

H

normal Density
std (0,1) Fitted Density

1 4 7 10 13 16 19 22 25 28 31 34

ACF of Standardized Residuals

lag

A
C

F

−
0.

05
0.

00
0.

05
0.

10
0.

15

G
A

R
C

H
 m

od
el

 : 
 s

G
A

R
C

H

1 4 7 10 13 16 19 22 25 28 31 34

ACF of Squared Standardized Residuals

lag

A
C

F

−
0.

04
0.

00
0.

02
0.

04
0.

06
0.

08

G
A

R
C

H
 m

od
el

 : 
 s

G
A

R
C

H

Figure 4. Left to right: Histogram of standardized residuals and sample ACF of residuals and square
residuals of the GARCH(1, 1) model.

Table 3. Weighted Ljung–Box test for GARCH(1, 1) model residuals.

Standardized Residuals Squared Standardized Residuals

Lag Statistic p Value Lag Statistic p Value

1 68.98 <0.01 1 1.025 0.3113
8 69.21 <0.01 5 4.718 0.1771
14 76.19 <0.01 9 5.904 0.3094

4.2. ARFIMA-GARCH Model
For this model, the AIC and BIC were applied to find the ARFIMA and GARCH

parts related to SSP log returns. For ARFIMA, an ARMA(2, 1) order and a fractionally
integrated parameter d̂ = 0.064 were found. For GARCH, a GARCH(1, 1) order was
found. Therefore, the resulting ARFIMA(2, d, 1)-GARCH(1, 1) was selected as the best
model based on an AIC and BIC of −0.65 and −6.63, respectively. Table 4 shows the
estimated parameters of the model, where the estimated parameters ϕ1, ϕ2, and θ1 of
ARFIMA were significant, but the fractionally integrated parameter was not significant
at the 95% confidence level. For GARCH, the estimated α1 and β1 parameters were
significant, associated with the heterokedastic components of SSP log returns. Also, α1 +
β1 = 0.984 < 1, which accomplished the stationarity requirement. Additionally, the
estimated ν parameter was significant and close to 6, indicating that the residuals were
modeled assuming a heavy-tailed distribution.
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Table 4. Estimated parameters of ARFIMA(2, d, 1)-GARCH(1, 1) model for SSP log returns.

Estimates Std. Error t Value p Value

ϕ1 0.739 0.085 8.688 <0.01
ϕ2 −0.135 0.019 −7.266 <0.01
θ1 −0.651 0.110 −5.900 <0.01
d 0.065 0.052 1.243 0.266
α0 0.002 0.002 0.797 0.425
α1 0.099 0.037 2.650 0.008
β1 0.885 0.039 22.837 <0.01
ν 5.972 0.337 17.726 <0.01

With respect to diagnostic analysis of the optimal model, a histogram plot was created
(Figure 5), showing leptokurtosis and suggesting that Student-t density was more adequate
than the normal one. In addition, Bartlett’s bands of sample ACF for absolute and square
standardized residuals showed that the residuals were uncorrelated at the 95% confidence
level2 This result showed that the proposed model fits the SSP log returns considering
volatility shocks over time. Evaluating the residuals with a weighted Ljung–Box test
(Table 5) confirmed that the residuals were white noise.
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Figure 5. Left to right: Histogram of standardized residuals, sample ACF of residuals, square
residuals of ARFIMA(2, d, 1)-GARCH(1, 1) model.

Table 5. Weighted Ljung–Box test for ARFIMA(2, d, 1)-GARCH(1, 1) model residuals.

Standardized Residuals Squared Standardized Residuals

Lag Statistic p Value Lag Statistic p Value

1 0.535 0.464 1 1.668 0.197
8 4.495 0.485 5 5.844 0.098
14 9.444 0.171 9 7.712 0.185

4.3. FIGARCH Model
AIC and BIC were applied to obtain the optimal FIGARCH order, which was a FI-

GARCH (1, d, 1) (with AIC of −6.64 and BIC of −6.629). In contrast to ARFIMA-GARCH,
the differencing fractionary operator is considered for model residuals, avoiding a spec-
ification of an ARMA order. The estimation results can be seen in Table 6, where the
estimated fractionally integrated parameter was significant and close to 0.1. Additionally,
α1 + β1 = 0.248 < 1, which accomplished the stationarity requirement. The estimated ν
parameter was significant and close to 6, again indicating the presence of a heavy tail in the
residual distribution.
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Table 6. Estimated parameters of FIGARCH(1, d, 1) model for SSP log returns.

Estimates Std. Error t Value p Value

α0 0.007 0.003 2.332 0.020
α1 0.031 0.134 0.231 0.817
β1 0.217 0.156 1.390 0.165
d 0.083 0.016 5.296 <0.01
ν 6.024 0.590 10.202 <0.01

Figure 6 shows the histogram of residuals with normal and Student-t fit. A leptokurto-
sis is notable, suggesting that residuals are better fitted by Student-t density. With respect
to sample ACFs, the values were higher than Bartlett’s bands for several lags, indicating
significant autocorrelations of residuals. The presence of autocorrelation in the residuals
suggests the existence of subjacent patterns in SSP log returns, which are still not explained
by a FIGARCH model, affecting inferential validity. For validation, we considered the
weighted Ljung–Box test in Table 7, which revealed that for lags 1, 2, and 5, the residuals
were white noise. Thus, the null hypothesis was rejected. A reason could be related to
periodic volatility increments due to the crisis. On the other hand, for lags 1, 5, and 9, the
squared standardized residuals were white noise, validating that the FIGARCH model
considered the square SSP log returns and square residuals.
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Figure 6. Left to right: Histogram of standardized residuals, sample ACF of residuals, square
residuals of FIGARCH(1, d, 1) model.

Table 7. Weighted Ljung–Box test for FIGARCH(1, d, 1) model residuals.

Standardized Residuals Squared Standardized Residuals

Lag Statistic p Value Lag Statistic p Value

1 20.90 <0.01 1 0.736 0.391
2 24.69 <0.01 5 1.073 0.843
5 41.34 <0.01 9 1.438 0.961

5. Volatility Estimation
The heteroskedastic models considered in the previous section do not provide an

explicit formula for volatility. In this section, we show that conditional volatility is an
implicit function at time t. We assume that an investor distributes wealth among a risk-free
asset (e.g., a bonus) and a risk asset that replicates the SSP index as follows:

wt = at + bt, (17)

where wt, at and bt represent the wealth, risk asset, and risk-free asset at time t. That
investor is assumed to gain wealth at time t + 1:

wt+1 = (1 + rt+1)at + (1 + r f
t+1)bt, (18)
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where rt+1 is the efficiency of the SSP index (or log return), and r f
t+1 is the risk-free bonus

income at time t + 1. By substituting bt = wt − at from (17) into (18), we obtain the following:

wt+1 = (1 + rt+1)at + (1 + r f
t+1)(wt − at),

= (rt+1 − r f
t+1)at + (1 + r f

t+1)wt, (19)

where the term rt+1 − r f
t+1 is known as the return excess, risk premium, or required spread

by the investor. Then, the investor is interested in finding the optimal at to maximize
usefulness or benefits as follows:

max
{at}

{
u(wt) + λEt[u(wt+1)]

}
, (20)

subject to (19), where u(wt) is the investor benefit function that depends on wealth wt,
and Et[·] represents the conditional expected value of the available information at time
t. In addition, λ is the investor’s discount factor. By replacing (19) in (20), we obtain
the following:

max
{at}

{
u(wt) + λEt[u((rt+1 − r f

t+1)at + (1 + r f
t+1)wt)]

}
. (21)

By computing the first derivatives with respect to at and equaling them to 0, we obtain
the following:

Et

[
λ

∂u(wt+1)

∂at
(rt+1 − r f

t+1)

]
= 0,

which is equivalent to the following:

∂u(wt)

∂at
Et

[
uλ(wt+1)(rt+1 − r f

t+1)
]
= 0.

Given that ∂u(wt)
∂at

̸= 0, the expected value term is equal to 0, and the term

uλ(wt+1) = λ

∂u(wt+1)
∂at

∂u(wt)
∂at

,

is known as the stochastic discount factor. Under the definition of covariance function, we
obtain the following:

Et[uλ(wt+1)(rt+1 − r f
t+1)] = Cov

(
uλ(wt+1), rt+1 − r f

t+1

)
+Et[uλ(wt+1)]Et

[
rt+1 − r f

t+1

]
.

And by using the definition of the usual correlation between two random variables,
we obtain the following:

Et

[
rt+1 − r f

t+1

]
=

−Cov
(

uλ(wt+1), rt+1 − r f
t+1

)
Et[uλ(wt+1)]

=
−Cov

(
uλ(wt+1), rt+1 − r f

t+1

)
√

Var(uλ(wt+1))Var(rt+1 − r f
t+1)

√
Var(uλ(wt+1))Var(rt+1 − r f

t+1)

Et[uλ(wt+1)]
,

= −Corr
(

uλ(wt+1), rt+1 − r f
t+1

)√Var(uλ(wt+1))Var(rt+1 − r f
t+1)

Et[uλ(wt+1)]
,

where Var(x) denotes the variance of random variable x. For simplicity, we assume that
r f

t+1 is constant in the last expression to obtain the following:
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Var(rt+1) =
Et

[
rt+1 − r f

t+1

]2

Corr
(

uλ(wt+1), rt+1 − r f
t+1

)2

(
Var(uλ(wt+1))

Et[uλ(wt+1)]

)−2

.

In the last expression, we observe that the return variance of the risk asset that repli-
cates the SSP index depends on three market and structural factors associated with investor
preferences in Chile:

• Et

[
rt+1 − r f

t+1

]2
: market risk premium required by the investor, which varies accord-

ing to macroeconomic shocks or crises such COVID-19 or the 2019 social protests;

• Corr
(

uλ(wt+1), rt+1 − r f
t+1

)2
: squared correlation between asset return and investor

wealth, which depends on investor preferences;

• Var(uλ(wt+1))
Et [uλ(wt+1)]

: variation coefficient or market risk assessment associated with investor
risk perception.
The SSP log-return volatility (and persistence) modeled using a GARCH, ARFIMA-

GARCH, or FIGARCH model depends on the persistence of structural factors related to
preferences of Chilean stock market investors. However, the GARCH, ARFIMA-GARCH,
and FIGARCH models do not explicity describe the conditional volatility of SSP log returns.

In financial time series, variations in stock values normally exist. Obtaining the real
(observed) volatility of the process is complex, but it is possible to identify the volatility
structure in some periods with the help of a heteroskedastic model (Gonzalez-Rivera et al.
2004). In this study, we considered the GARCH, ARFIMA-GARCH, and FIGARCH models,
which explain conditional variability over time, recognizing that temporal volatility may
change in response to past events (Palma 2016). Figure 7 presents the estimated volatility
(σ̂2

t ) for these models from January 2010 to September 2023. Although the models consid-
ered different approaches to volatility, the three volatility fits were similar. However, the
FIGARCH and ARFIMA-GARCH fits produced the highest and lowest values, respectively,
also considering that the fitted volatilities allowed us to identify some crisis periods; for
example, the pandemic starting in March 2020.

jan. 05 2010 jul. 01 2011 jan. 02 2013 jul. 01 2014 jan. 04 2016 jul. 03 2017 jan. 02 2019 jul. 01 2020 jan. 03 2022 jul. 03 2023

0.01

0.02

0.03

0.04

0.05

0.06
Garch
Ar�ma−GARCH
Figarch

Figure 7. Estimated volatility under GARCH, ARFIMA-GARCH, and FIGARCH models for SSP log
returns (January 2010–September 2023).

In other words, the selected models more effectively captured the intrinsic dispersion
of the SSP index by showing greater relative volatility, not only during the period of the
global health crisis compared to the estimates obtained from traditional autoregressive
conditional heteroscedasticity models, but also during the post-crisis period. This greater
volatility is consistent with the global fiscal imbalances that have arisen and their impact on
the atypical returns or values of the risk premiums demanded by investors. In this way, it is
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formally observed that as the returns on financial assets Et[rt+1 − r f
t+1] become unstable, the

correlation Corr
(

uλ(wt+1), rt+1 − r f
t+1

)
between the marginal benefit of investors’ wealth

and these returns decreases, which aggravates their volatility Var(rt+1).
Therefore, the ability to identify the volatility of returns, especially in atypical fluc-

tuations in the financial system, is essential for risk management and the optimization of
investment portfolios. This allows investors to plan and mitigate the impacts of future
events with similar characteristics.

6. Discussion and Conclusions
In this study, the GARCH, ARFIMA-GARCH, and FIGARCH models were considered

to model the SSP log return time series from January 2010 to September 2023. The models
were selected in response to the high volatility of log returns. Palma (2016) explained
that the financial time series and stock indices presented generally log memory in their
processes, which motivated the use of fractionally integrated and heteroskedastic models
for this study. In addition, model parameters were estimated, where for ARFIMA-GARCH
(selected over its competitors based on AIC and BIC), the fractionally integrated parameter
was not significant. However, the residuals of this model were white noise, confirmed
by the weighted Ljung–Box test. For the GARCH and FIGARCH models, all parameters
were significant, but their residuals were not white noise, likely because volatility rose
in some periods due to crises (Figure 7). In conclusion, fractionally integrated and het-
eroskedastic models offer a more precise fit for SSP log return volatility compared to a
classical GARCH model.

Some implications obtained based on the estimation of SSP log-returns given in this
study are as follows:
1. Volatility estimation was implicit in all models because they considered the actual

value of the SSP index. However, the SSP log return volatility of assets is influenced
by structural market factors linked to investor preferences.

2. The proposed ARFIMA-GARCH model detects the influence of volatility increments
of the SSP index linked to external factors that impact the economic outlook (Idrovo-
Aguirre and Contreras-Reyes 2021b), such as China’s economic slowdown in 2012
and the subprime crisis in 2008.

3. In addition, the volatility increments of the SSP index may be affected by local macroe-
conomic variables such as the monthly economic activity index3 (Troncoso et al. 2023),
which summarized economic activity in several sectors in a given month, as noted by
Donders Canto (2015), who supports the idea that a systematic variable affecting the
price structure or impacting company dividends also affects stock market returns.

4. Also, IMACEC volatility changed markedly during the pandemic (Idrovo-Aguirre
and Contreras-Reyes 2021a) due to the fluctuations in its values; a result of the global
pandemic’s economic impact. In this sense, IMACEC volatility is related to the
infectious disease volatility index (Romero-Meza et al. 2021), which contains data on
infectious diseases and economic data from the United States and other countries.

5. In uncertain economic situations like these, saving capacity tends to fall, reducing
the capital available for the stock market. Therefore, risk aversion intensifies, and
liquidity shifts toward investments that are considered safe, such as fixed income, and
away from equities. This movement contributed significantly to IMACEC volatility
during the study period.
Beyond the proposed FIGARCH and ARFIMA-GARCH models, several other exten-

sions could be considered, such as FIAPARCH and HYGARCH (Khumalo et al. 2023),
EGARCH (Ghalanos 2023), or TGARCH (Chávez et al. 2023). Further work should consider
multivariate time series by mixing SSP log returns with data from other stock markets,
such as S&P500, NASDAQ, and those in other Latin American countries (Aragón 2017).
For this approach, it could be useful to consider vector ARFIMA (Contreras-Reyes 2022),
multivariate SETAR (Contreras-Reyes 2024), and multivariate GARCH (Bauwens et al.
2006) models. In addition, recurrent neuronal network methods could be implemented,
given the high number of observations (Ubal et al. 2023).



J. Risk Financial Manag. 2024, 17, 401 16 of 17

Author Contributions: J.E.C.-R. and J.E.Z. wrote this paper and contributed the reagents/analysis/
materials tools; J.E.C.-R. and J.E.Z. conceived, designed, and performed the experiments and analyzed
the data. B.J.I.-A. supervised and contributed the reagents/materials tools. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data used in this research is available at https://www.bcentral.cl/,
accessed on 1 April 2023.

Acknowledgments: The authors thank the editor and two anonymous referees for their helpful
comments and suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

Notes
1 Spanish acronym IPSA.
2 Except for lags 10 and 21 for |rt|, where sample ACF was higher than Bartlett’s bands. However, the sample ACF scale was small

in a range of −0.04–0.04, indicating that deviations were of a low magnitude.
3 Spanish acronym IMACEC.
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