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Abstract: In this research, the influence of global slenderness and sliding pallets factor on the seismic
design of steel storage racks are assessed. Variations in span length, the height of storage levels,
live load, and percentage of live load considered in the seismic mass are studied for different levels
of seismic zone and soil type. The models were designed according to the Chilean Code NCh2369.
Subsequently, a global sensitivity analysis was developed to analyze the influence of each studied
parameter in the seismic design response in terms of fundamental period, drift, and base shear from
a response spectral analysis approach. A total of 12000 simulations were performed. Two-hundred
additional models were performed to evaluate the variation of seismic mass in the structural response.
Results indicate a significant influence of live loads and seismic mass on steel racks designed for
soft soils and unbrace conditions. The stiffness also modifies the performance of the racks, mainly
in models using braces in the down-aisle direction and cross-aisle direction. In these cases, the
seismic mass factor does not have a strong influence on structural response in comparison to the
global slenderness.

Keywords: steel storage racks; sensitivity analysis; steel structures; design codes; seismic design

1. Introduction

The seismic design of racks must consider an important number of parameters in
comparison to those required by a building. This includes, for example, the interaction of
the pallet with the support elements (sliding effect). In this regard, different studies have
been conducted, such as the study performed by Castiglioni et al. [1]. According to [1], a
static frictional model can assess the sliding between the pallet load and the beams. The
Coulomb model [2] proposes that friction opposes, and its magnitude and velocity depend
on the contact area, which can be described by Equation (1):

Fc = µ·FN (1)

where Fc is proportional to the normal force, µ = coefficient of friction (sliding) in the case of
racks, and FN is the normal force—in the case of racks, it is the weight of the load. However,
this model does not specify what happens when the velocity passes zero. Therefore, other
authors have modified this model by considering parameters that depend on the velocity
(see Equation (2)).

F = (Fc + Fvv) sgn(v) (2)

A refined static friction model was proposed by Stribeck et al. [3], where a model
considering the velocity and friction force for velocity zero as a function of external forces
is defined by Equation (3):

F(v) = Fc + (Fs − Fc)·e−|v/vs|δs
+ Fv·v (3)
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where vs is known as the Stribeck velocity. The dynamic friction models have also been
studied, the Dahl model [4] being one of these that considers the friction force as a problem
dependent only on the relative displacement between two points on a surface, such as that
shown in Equation (4):

dF
dt

=
dF
dx
·dx

dt
=

dF
dx
·v = σ·

(
1− F

Fc
sgn(v)

)α

·v (4)

where σ is the stiffness coefficient and α is a parameter that determines the shape of the
stress-strain curve. However, this model does not include the effect of adhesion or the
Stribeck effect. The model performed by Canudas et al. [5] is a dynamic friction model, esti-
mated as the average deflection force for elastic springs, defined by Equations (5) and (6):

F = σo·z + σ1(v)
dz
dt

+ f (v) (5)

dz
dt

= v− σo·
|v|

g(v)
z (6)

where z is the average deflection, σo is the spring stiffness, σ1(v) is the damping, g(v) is
a function that considers the Stribeck effect, and f (v) is the viscous friction. Similarly,
several numerical studies have been developed. In a study performed by Denöel et al. [6],
the mass is stuck to the support if it does not exceed the friction force; therefore, the
Equations (7) and (9) control the physical phenomenon:

..
x =

..
u(t) = a·g· sin(ω·t) (7)

.
x =

.
x(to) +

a·g
ω
·(cos ωt− cos ωto) (8)

x = x(to) +
( .
x(to)− a·g· cos ωto

)
·(t− to) +

a·g
ω2 ·(sin ωt− sin ωto) (9)

Once the inertial force overcomes the resistance to the frictional force, the mass initiates
sliding on the support, and the equations Equations (10)–(12) control the physical phenomenon:

..
x =
±µ·M·g

M
(10)

.
x =

.
x(to)± µ·g·(t− to) (11)

x = x(to) +
.
x(to)·(t− to)± µ·g· (t− to)2

2
(12)

In summary, various analytical expressions can be considered, with greater or lesser
complexity; however, to date, they have not been accepted for common use in rack design.
This is due to the complexity introduced by the use of different pallet qualities and different
beam finishes. Finally, it is necessary to perform local tests considering the interaction
between the surfaces and the nature of the load.

Subsequently, a robust experimental study on sliding between different types of beams
and pallet types and materials was developed by Castiglioni [1]. A total of 1260 static
tests and 200 dynamic tests were performed to evaluate the static and dynamic coefficient
of friction for the interaction of pallets in racks. The results obtained show that the type
of surface plays a fundamental role in the static friction coefficient. In this sense, beams
or pallets with less rough surfaces can achieve up to 30% more sliding than those with
rougher surfaces. Plastic pallets reach values of µ = 0.2, while wooden pallets can reach
values of µ = 0.5 if the beam surface is not painted. On the other hand, in the down-aisle
direction, the dynamic friction coefficient reached values in the range of 0.3–0.6 g, while,
in the cross-aisle direction, values between 0.3 g and 0.5 g were obtained. However, the
behavior exhibited is completely different in both directions. In the seismic tests performed,
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values between 0.15 g and 0.35 g were reported in the cross-aisle direction, while, in the
down-aisle direction, values between 0.45 g and 0.6 g were obtained.

In accordance with the aforementioned, there is variability in the quantification of
the sliding factor, despite several numerical and experimental tests that were performed.
Currently, design codes address this phenomenon in different ways, but in a very simple
manner. In American design codes [7,8], a factor equal to 0.67 is applied to dead load
to estimate the seismic force, considering the fraction that participates in the dynamic
movement, i.e. a sliding factor of µ = 0.33 is assumed to consider the effect of sliding
mechanisms on the pallet load when the seismic weight needs to be estimated. Similarly,
European design codes [9,10] establish values of beam-pallet friction coefficient (µs) be-
tween 0.37 and 0.10 depending on the type of pallet and the beam finishing conditions. In
addition, Australian design code [11] addresses the estimation of the seismic mass to the
RMI [7] or FEM [10] procedures.

In the Chilean context, different earthquakes have caused damage to structures, due
to the high seismic hazard of the country. For example, the Maule-Chile earthquake caused
extensive damage to most of the industrial structures in southern Chile, which resulted
in the evaluation of the objectives of the Chilean Codes NCh2369 [12] and NCh433 [13].
Subsequently, the study developed by [14] evaluated the seismic behavior of selective
storage racks subjected to Chilean earthquakes. Nonlinear Pushover and Nonlinear Time
History Analyses were used to obtain the seismic response subjected to seismic records
with two horizontal components and a magnitude (Mw) up to 7.7. The racks were designed
according to NCh2369 [12] and AISI Standard [15]. The results showed an elastic behavior
in the cross-aisle direction and inelastic action concentrated in pallet beams and up-rights
in the down-aisle direction.

Several studies have been performed to evaluate the behavior of racks using linear
models. In this regard, investigations conducted by [16–19] studied the variability of
design parameters with a combination of nonlinear analysis. However, the influence of
global slenderness and variability of seismic mass were not identified. Other numerical
studies were performed by [20–25], using nonlinear analysis to assess the behavior of racks
subjected to earthquakes. However, the influence of global slender ratio and participative
mass variation were not considered in this methodology. Therefore, the results obtained
are difficult to implement in the design, because there are specific cases despite the use of
robust analysis methods.

The use of sensitivity analysis has been used in steel racks to study the seismic
performance. For example, the research conducted by [26] uses sensitivity analysis to
analyze the imperfections and direct strength method design of web-stiffened lipped
channel columns on the local-distortional interaction. Initially, finite element models
were combined with a constrained finite strip method calibrated from experimental data.
The results of the sensitivity analysis show that the imperfection of the buckling shape
type has the greatest destructive impact on the part capacity. This study also confirms
the applicability of sensitivity analysis to different physical phenomena, specifically in
cold-formed profiles, which are common elements in racks.

Similarly, in the investigation conducted by [27], a sensitivity analysis from Monte
Carlo simulation and the component base method was used to evaluate the influence on
the structural response of rack connection due to the structural details. Randomness in
the geometrical features and mechanical properties of the connection components were
the variables analyzed. Results show that the system effects reduce flexural stiffness and
that the variability in the response of each component does not propagate to the overall
bending capacity. Nevertheless, although this research indicates the importance of the
variability of the bending capacity of rack connections, it did not evaluate the influence of
global slenderness on racks.

Recently, research developed by [28] used the global sensitivity analysis method based
on variance to analyze the reduction of seismic demand of base isolation racks with different
combinations of their structural parameters. The parameters studied were the number
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of storage levels, the height between these, and isolation period, among others. Results
showed the effectiveness of using a base isolation kinematic device system in reducing the
response up to one order of magnitude. In addition, it was determined that the parameters
that have the higher influence on the response have several levels and height between
them. However, this research did not analyze the influence of seismic participative mass on
the response of the structure and global slender ratio. As mentioned above, steel storage
racks have been widely studied using different analysis approaches and standards. In this
regard, the sensitivity analysis is a tool that allows consideration of different cases of study,
reducing the computational cost.

In this research, a parametric study to assesses the influence of sliding factor and
global slenderness ratio on the elastic response of steel storage racks, using a sensitivity
analysis, was performed. Variation of the sliding factor and the variation of total height,
span length, and live load was performed. The steel sections were designed according to
the AISI standard [15], considering the minimum required resistance obtained from flexural
buckling, local buckling, and distortional buckling in the elements and the loads established
in NCh2369 [12]. The parametric study considers the use of numerical techniques, such as
regional sensitivity analysis, to identify if the parameters of interest have or do not have
influence in the design of steel racks. Finally, the influence of each parameter is analyzed in
terms of fundamental period, drift, and base shear from a modal response spectral analysis
approach. A total of 12,000 simulations with the input variables previously described, in a
range of the values typically used in racks, were performed.

2. Chilean Seismic Design Philosophy of Steel Storage Racks

The seismic design of steel racks is based on the application of NCh2369 [12]. In
this code, two performance levels are considered, Life Safety and Continuity of Opera-
tions, for the most severe earthquake expected [29]. The current version corresponds to
2003 conditions, prior to the Bío-Bío earthquake, which had a magnitude of Mw = 8.8 and
occurred on 27 February 2010. In this regard, steel storage racks are industrial structures
regulated exclusively using a response reduction factor R = 4 regardless of its typology
or global slenderness. Furthermore, the possibility of reducing the seismic mass up to
50% can be achieved, as well as limiting the drifts to 1.5% in the inelastic range. However,
deformations can be exceeded if P-delta effects are considered in the analysis, which can
affect the stability of stored merchandise. The philosophy of this code comes mainly from
a regulatory evolution since the Northridge earthquake in 1994, and is focused on the
use of steel structures with high structural redundancy, robust cross-sections with high
width-to-thickness ratios, and connections designed by strength and stiffness requirements
obtained through capacity design approach.

As a consequence, these criteria are very difficult to apply to a seismic design of
rack structures, in which the structural components are made from cold-formed sections
susceptible to local and distortion buckling, with live loads exceeding more than 5 times
the self-weight of the structure, highly nonlinear connections, and a flexural behavior
equivalent to shear connections. In addition, the low structural redundancy, due to the
requirements of logistics and mobility of the goods during shelf life, introduces a complexity
that must be considered in the seismic design of racks.

Currently, other codes such as [7,9], addressing industrial rack design, are mainly
adapted to the design for transcurrent earthquakes. The FEMA460 [30] considers occur-
rences during the earthquakes of the last 30 years. However, the seismic hazard and seismic
recurrence in Chile require the consideration of new strategies to meet the performance
objectives established in [2]. For example, during the 27F earthquake, numerous damages
in anchorages and bracing in steel racks were observed, resulting in the collapse of the
stored goods [29].

In this sense, the study of the global slenderness effect was preliminarily addressed
in [14] using a nonlinear analysis of Chilean earthquakes. Although results show that
increasing lateral stiffness is an alternative to be considered in the seismic design, it is not
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sufficient because the response may be conditioned to high-frequency content earthquakes,
affecting racks with short periods. At present, there is no exclusive standard for racks in the
Chilean seismic context; therefore, it is necessary to identify the parameters that most affect
their design, such as the variation of storage level, span length, global slenderness, live
load variation, and seismic mass variation. Additionally, assessing the variety of seismic
zones and the type of soil can be helpful to identify the limit conditions for a safe design.

3. Design of Steel Storage Racks

There are different types of racks; however, selective rack systems are most commonly
used in Chile. This storage system is an arrangement of columns known as uprights and
beams called pallet beams. Their parts and elements are designed according to [15]. In
general, two seismic force-resisting systems are used: (i) a braced frame in the cross-aisle
direction, and (ii) a moment frame in the down-aisle direction. The beam-column joint is
a moment connection with very low elastic stiffness and plays an important role in the
seismic performance of rack structures. The behavior of rack moment connections has
shown pinching and a limited capacity for energy dissipation when subjected to cyclic
loads. Bracing towers are also required in some cases, to control the story drift. This
improves the lateral stiffness and the resistance in the down-aisle direction.

The global slenderness or aspect ratio in each direction is also discussed in this re-
search. Slender racks are susceptible to overturning and frame distortion, which reduces
their efficiency. Therefore, different global slenderness relationships were studied. The
slenderness parameter was considered in cross-aisle slenderness (λCA = H/B; H = height
and B = width in cross-aisle direction) and down-aisle slenderness (λDA = H/L; H = height
and L = length in down-aisle direction). In Table 1, the story level (H) and slenderness
parameters are shown in each archetype studied. In Figure 1, a schematic view of models
assumed in numerical research is shown. CB is a type of selective rack with a short-low
slenderness relationship. Two types can be obtained in accordance with a seismic design:
the CB and T-CB, where the use of braced towers allows control of the lateral deformations.
T-CA is a selective rack with a short-high slenderness relationship; T-LB is a selective rack
with a large-low slenderness relationship; and T-LA is a selective rack with a large-high
slenderness relationship. The prefix T is used to specify the use of braced towers.

Table 1. Summary of slenderness parameters in rack structures studied.

Model H (m) λCA λDA

CB 6.5 8.7 0.34

CA 12.2 16.4 0.65

LB 6.5 8.7 0.19

LA 12.2 16.4 0.34

ASTM-A36 [31] was considered for all members with nominal values, according to [7].
This material is commonly used in the fabrication of racks manufactured in Chile. Modal
response spectrum analysis (MSRA) was used for analysis and seismic design, according
to [2]. Dead and live loads were included. Two unit loads (unit load = 9.8067 kN) were
used to simulate the goods on pallet beams. The seismic mass was estimated from 100%
dead plus 50% unit loads. The purpose is to reveal the minimum design allowed according
to [12]. However, different load factors can be used to consider the friction force interaction
between the load-pallet-beam. A sensitivity analysis will be performed in the next section
to identify the consideration of this parameter in the design of selective racks. A summary
of the dimensional properties of rack members is shown in Figure 2.
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To quantify the seismic demand, the two zones with higher maximum effective accel-
eration were used (Zone 2, Ao = 0.30 g and Zone 3, Ao = 0.4 g) and the two types of soil
with higher amplification were considered (soil type 3 and soil type 4), according to [2].
The response reduction factor R = 4 is used for all models [2] and the design spectrum with
R = 1 is shown in Figure 3.

The steel rack structures were modeled using the software SAP2000 v22 [32]. Up-
rights, beams, and brace members were modeled using frame elements with two end
nodes and six degrees of freedom per node. The base connections in the down-aisle
direction were modeled as fixed base columns, considering the elastic stiffness in accordance
with experimental tests performed by [33], while a pinned base was used in the cross-
aisle direction. The beam-column connections were modeled according to considerations
established in [14]. The elastic stiffness of the moment connection was used in the numerical
models. Furthermore, the flexural stiffness in braces was released at both the beginning
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and end of the element. The second-order effects were considered with P-delta, plus
large displacements analysis modifying the stiffness matrix considering equilibrium in a
deformed position through a previous nonlinear case. From this case, the rest of the load
cases were analyzed. A total of 20 models were designed for different combinations of
soil, seismic zone, and global slenderness, obtaining their response in terms of period, base
shear, and drift by direction.
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In Figure 4, fundamental period values are shown for all models studied. Higher period
values were obtained for models without bracing towers compared to braced models, because a
high stiffness is provided by the bracing. When comparing the unbraced models with braced
models, models with low levels have similar periods regardless of their length in the down-aisle
direction. Similar behavior was observed for models with bracing towers and high levels. This
behavior is independent of the length of the rack, type of soil, and seismic zone. In Figure 5, base
shears in the down-aisle and cross-aisle directions are shown. The results obtained reveal the
effect of the higher stiffness, which is transferred directly as a shear force to the structure. The
seismic zone introduces higher shear values at the base in comparison to the type of soil. The
maximum base shear was obtained in the down-aisle direction for the braced model; however,
in the unbraced models, the maximum base shear was reached in the cross-aisle direction.

Buildings 2022, 12, x FOR PEER REVIEW 9 of 22 
 

the down-aisle direction for the braced model; however, in the unbraced models, the max-
imum base shear was reached in the cross-aisle direction. 

 
Figure 4. Periods in racks models. 

 
Figure 5. Base shear by direction. 

  

 CB-
Z2-S3

 CB-
Z2-S4

 CB-
Z3-S3

 CB-
Z3-S4

T- CB-
Z2-S3

T- CB-
Z2-S4

T- CB-
Z3-S3

T- CB-
Z3-S4

T- CA-
Z2-S3

T- CA-
Z2-S4

T- CA-
Z3-S3

T- CA-
Z3-S4

T- LB-
Z2-S3

T- LB-
Z2-S4

T- LB-
Z3-S3

T- LB-
Z3-S4

T- LA-
Z2-S3

T- LA-
Z2-S4

T- LA-
Z3-S3

T- LA-
Z3-S4

Fundametal period (s) 1.438 1.438 1.438 1.438 0.323 0.323 0.323 0.323 0.852 0.852 0.852 0.852 0.317 0.317 0.317 0.317 0.893 0.893 0.893 0.893

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

Fundametal period (s)

 CB-
Z2-S3

 CB-
Z2-S4

 CB-
Z3-S3

 CB-
Z3-S4

T- CB-
Z2-S3

T- CB-
Z2-S4

T- CB-
Z3-S3

T- CB-
Z3-S4

T- CA-
Z2-S3

T- CA-
Z2-S4

T- CA-
Z3-S3

T- CA-
Z3-S4

T- LB-
Z2-S3

T- LB-
Z2-S4

T- LB-
Z3-S3

T- LB-
Z3-S4

T- LA-
Z2-S3

T- LA-
Z2-S4

T- LA-
Z3-S3

T- LA-
Z3-S4

Base shear X (tonf) 1.5 3.9 2.0 5.2 3.1 3.1 4.2 4.2 5.5 5.5 7.3 7.3 6.2 6.2 8.3 8.3 10.9 10.9 14.5 14.5
Base shear Y (tonf) 3.1 3.1 4.1 4.1 2.4 2.4 3.2 3.2 3.5 4.6 4.7 6.1 5.1 5.1 6.8 6.8 6.4 8.9 8.5 11.8

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

Base shear X (tonf) Base shear Y (tonf)

Figure 4. Periods in racks models.
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Figure 5. Base shear by direction.

In Figure 6, the inter-story drift ratio in the down-aisle direction is shown. All values
obtained meet the limit established in [12], except for models designed with soil type 4. In
addition, models without bracing towers and soil type 4 reached a displacement increase
of up to 4 times the displacements observed in models with soil type 3, regardless of the
seismic zone. On the other hand, comparing racks with bracing towers and low-high, the
maximum drifts are achieved in the upper levels. This phenomenon is more evident when
global slenderness increases, as observed in the high-rise models. In Figure 7, drift values
in the cross-aisle direction are shown. All values are less than the limit established in [12].
Moreover, all models achieved similar drift values when the global slenderness ratio is low.
Rack models with high slenderness ratios reach drifts up to 7 times more than the rest of
models. This is independent of soil type, seismic zone, and rack length.
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Figure 6. Drift by level in down-aisle direction.
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Figure 7. Drift by level in cross-aisle direction.

4. Sensitivity Analysis on Steel Racks

The parametric study of rack structures requires the differentation of many variables.
Consequently, these numerical models can be highly expensive to analyze and run. The
computational cost is increased with the parameters involved in the system and the de-
grees of freedom of the structures analyzed. Therefore, it is necessary to identify the
critical parameters of rack structures, to simplify the models and reduce the computational
costs [34]. Sensitivity analysis (SA) is a methodology used to study the variability of output
parameters in response to input variations. This relationship can be studied by identifying
factors or variables of greater and lesser importance on the results of interest of the model.
Furthermore, SA is classified into two types: local sensitivity analysis (LSA) and global
sensitivity analysis (GSA) [35].

In this research, a sensitivity analysis was performed to establish the relationship
between the input variables and the output variables, with different models to understand
the influence of the variables in the seismic design of racks. Sensitivity analysis allows for
study of the variation in the outputs of a numerical model. There are several reasons for
performing this type of analysis. In general, a ranking of the different input variables is
performed to identify those that have the greatest influence on the outputs. Subsequently,
the domain of values of each input variable that produces significant changes in the output
values is plotted, known as mapping. For this purpose, regional sensitivity analysis (RSA)
was used, which was initially proposed by [36,37]. This method consists of dividing the
samples into “Behavioral Models” (BM) and “Non-Behavioral Models” (N-BM). The BM is
identified with a red color and the N-BM are identified with a blue color. Values below the
median are considered BM, and values above the median as N-BM. The above classification
depends on whether or not the output exhibits expected behavior or is well within a
predefined threshold.

The application of sensitivity analysis was performed using an open-source tool called
SAFE, developed by [38]. For this purpose, rack-type structures were modeled in [32],
and the programming interface developed by the authors was used to generate a routine
test using MATLAB software [39] that optimizes the modeling and analysis process. The
models studied are those from the seismic design of the five archetypes of single-depth
selective racks. The model input variables are classified into geometric and design variables
(see Figure 8). Among the geometric variables, the column height (H, with a variation
range of 1.2–2 m) and beam length (L, with a varied range of 1.5–3 m) were considered,
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while the design variables were the live load (QL, with a varied range of 0.1–1 ton), which
is distributed on each beam, and the seismic mass (Ms) associated with the fraction of load
to consider in the seismic analysis.
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For the seismic mass (Ms), the NCh2369 [12] standard establishes up to 50% reduc-
tion for storage warehouses. Similarly, to the design American code [7], this reduction is
considered a mechanism of sliding between the pallet and beam. The value of the seismic
mass also cannot be lower than that mentioned by the standard; the range [0.5–1] was
considered continuously. The studied output parameters, obtained from the seismic anal-
ysis of the storage rack correspond to the fundamental period, drifts at levels 1, 2, and 3
in both directions, and the basal shear in both directions. A great number of data were
obtained; however, uniquely, the results of short-low racks models are shown as follows (in
Supplementary files, the results of all models studied are reported).

In Figure 9, the results of fundamental period according to SA are shown for CBZ2S3
models. The QL input variable generated a notorious perturbation in the analysis per-
formed. Therefore, this is the variable that most affects the behavior of the short-low models
studied. In this sense, the live load controls the dynamic behavior of the structure, such as
the period (T = 2π

√
(M/K)—if the mass increases, then the period increases. This behavior

was observed in all models. Although the H and L parameters were varied in the models,
the influence on the output parameters does not follow a clear trend. On the other hand,
a slight perturbation was observed when the Ms parameter increases according to “Base
shear Y” parameter output. However, the fit of the values was not so clear.
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the values were not so clear. 
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In Figure 10, the results of the fundamental period according to SA are shown for
CBZ2S4 models. Uniquely, the soil type was modified (S3 to S4). Once again, the QL input
variable generated a notorious perturbation in the analysis performed, reaching a strong
tendency. This behavior was observed in all models. All other parameters do not follow a
clear trend. Interestingly, a slight fit was observed when the Ms parameter increased, but
the values were not so clear.
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In Figure 11, the results of the fundamental period according to SA are shown
for CBZ3S3 models. The QL input variable generated a notorious perturbation in
the analysis performed. This behavior was observed in all models. The variation
of H parameter generated a perturbation in inter-story drift and base shear, for the
down-aisle direction. However, the values do not follow a clear trend. In Figure 12,
the results of the fundamental period according to SA are shown for CBZ3S4 models.
Uniquely, the soil type was modified (S3 to S4). The QL input variable generated an
important perturbation in the analysis performed and achieved a strong tendency.
This behavior was observed in all models. All other parameters do not follow a clear
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trend. From the results obtained, a specific evaluation of the input parameter Ms
without varying the QL loading is performed, to identify its influence on the most
affected models (see Section 5).
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5. Parametric Study of Seismic Mass

An additional parametric study is conducted using OpenSees software [40] to analyze
a simplified model. The simplified model is configured in 2D, with four levels and material
properties similar to those used in previous models. A modal response spectrum analysis
was also considered. The model chosen represents the higher flexibility between the models
previously analyzed, since the models with higher stiffness have less probability to enter
resonance in soft soils such as S3 and S4. The model was calibrated from the previous
SAP2000 models in terms of fundamental period and modal shapes, as shown in Figure 13.
To consider the P-Delta effect, an additional column has been considered at the end of the
structure, with a pinned base and connections and loaded with the entire load by level.
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Figure 13. Mathematical Model developed in OpenSees (units in mm).

Columns TC 100X105X3 and beams TC 125X50X2 were used. These members were
modeled as “elastic beam column” elements. In addition, the model considers the flexibility of
the rack connections according to the modeling suggestion provided by [14]. The connections
were modeled as a “zero-length” element, with uniaxial material properties representing the
elastic stiffness of the moment rotation diagram of the connections. To analyze the effect of
sliding factor variation considered by [7,12], a reduction in seismic mass factor Ms was modified.
The range of variation between 0.5–1.0 was applied in numerical models. The fundamental
period, the base shear, and the drift angle were evaluated. This analysis was performed for
seismic zones 2 and 3 (Z2, Z3) and soil types S3 and S4, according to NCh2369 [12].

In Figure 14, an increase of fundamental period as an increase of seismic mass factor
was obtained. This behavior can be obvious; however, it is necessary to verify the proportion
and the degree of the relationship, which, to date, has not been studied. The linear relation
achieved can be affected if braces are used in the down-aisle direction. In Figure 15, the
relation between base shear and seismic mass is shown. In this sense, a higher influence of
the Ms factor in models analyzed for soil type S4 was obtained. The values of the slope
curve are reduced if a better soil type is considered. Therefore, the base shear is dependent
on Ms factor for steel racks located on soft soils.
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In Figures 16–18, the variation of inter-story drift according to the variability of
the Ms factor is shown for level 1, level 2 and level 3, respectively. Once again, the
characteristics of soil type considered play an important role the behavior of steel racks.
The story drift of models designed with soil type S4 developed a higher influence in
comparison to models designed with soil type S3. The influence is lower for models
with soil type S3, independent of seismic zone. This trend is similar in all levels of
models analyzed.
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6. Conclusions

In this research, the influence of global slenderness and seismic mass factor (sliding
factor) on the structural response of steel storage racks was studied. Five archetypes
considering different global slenderness relationships of selective storage racks designed
according to the Chilean code were analyzed for two seismic zones and two types of soils.
For this purpose, sensitivity analysis of variating geometric properties and seismic mass
factors from the designed models was performed. A total of 12,000 numerical models
were developed. Finally, the variation of seismic mass was studied using a local sensitivity
analysis, obtaining 200 numerical models in OpenSees. In this sense, the main conclusions
of this study are as follows:
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1. The compliance of drifts according to NCh2369 requires the use of bracing towers
in the case of soft soils and elevated seismic zone. However, it is not sufficient to
consider the p-delta effects in seismic design without maintaining the 1.5% drift limit,
because the use of braces increases the shear seismic force absorbed by the structure.
Furthermore, the current requirements do not guarantee displacement control when
the seismic mass is deemed at 100%.

2. The global slenderness can modify the structural configuration to ensure stability.
Therefore, slender steel racks usually require bracing in both directions. In these cases,
it is important to evaluate the fundamental period in the cross-aisle direction, which
can control the dynamic response.

3. The live load (QL) wielded an important influence on the response of the structure,
mainly for values greater than 0.5 ton. This behavior was observed for all models
with or without bracing towers.

4. The seismic mass (Ms) has an important influence on the dynamic behavior of the
racks studied, such as was observed in the local sensitivity analysis performed on
models without bracing towers. This effect is amplified in models designed for soil
type S4, independent of the seismic zone. A seismic mass factor or sliding factor
µ = 0.5 is not safe, especially in cases where the racks need to be designed for high
force, such as racks located on soft soils.

5. A drift of 0.015 is greatly exceeded when a high value of seismic mass factor and
soft soil type S4 are used, regardless of the seismic zone. Therefore, additional
considerations are required for these flexible structures located in soft soils. Despite the
extra strength that these structures could have, their ductility and response reduction
factor are commonly low and cannot be considered as extra safety for the seismic
design. In this sense, a safe design requires consideration of the high values of Ms for
the seismic design of steel racks, particularly for steel racks located on soft soils.

6. Finally, it is necessary to incorporate additional requirements for seismic design in the
Chilean standards to consider the phenomena of global slenderness and adjustments
in the seismic mass, according to the studied design variables.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/buildings12111826/s1, The results of short-low racks models are shown in
Supplementary files.
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