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Abstract: There have been efforts to use building demolition waste as an alternative aggregate in
concrete to decrease the use of natural resources for construction. The World Green Building Council
estimates that the construction industry is responsible for more than 50% of all material extracted
globally and that construction and demolition waste makes up 35% of global landfills. As a result,
incorporating recycled aggregate (RA) in concrete production is a prudent course of action to reduce
the environmental impact. This study reviews prior research on using recycled aggregate instead of
conventional ingredients in concrete. The composition and morphology of different types of RA, the
behavior of RA in fresh and hardened states, keyword co-occurrence and evolution analysis, and
the various additives used to enhance the inferior properties of RA are discussed. The RA showed
different physical properties when compared with natural aggregate. However, the addition of
pozzolanic materials and various pretreatment techniques is desirable for improving the inferior
properties of RA. While building waste has been utilized as a substitute for fine and coarse aggregate,
prior research has demonstrated that a modified mixing approach, an adequate mixing proportion,
and the optimum replacement of cementitious materials are necessary. Based on the review, the
recommendation is to use RA at a replacement level of up to 30% and the addition of precoated and
pozzolanic materials as a treatment to provide concrete with adequate workability, strength, and
durability for structural applications.

Keywords: cementitious materials; construction and demolition waste; fresh and hardened properties;
recycled aggregate; sustainability

1. Introduction

Construction and demolition waste materials are accumulated during the construc-
tion, modernizing, rehabilitation, retrofitting, or demolition of infrastructures. Almost one
million tons of construction and demolition waste (CDW) materials are created annually
using natural resources, mainly for construction purposes. It is high time to pay earnest
attention to the damage done by CDW. Most countries lack processing facilities for these
CDW materials, so waste materials are dumped rather than utilized and recycled in the
construction of new buildings [1]. We have observed a rapid increase in the use of CDW
materials in order to make sustainable concrete with the environment and people’s lives
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in mind. However, further analysis indicates that the use of waste materials in concrete
significantly affects its mechanical performance [2]. Compared with conventional aggre-
gates, recycled aggregate (RA) materials show a reduction in specific gravity, an increase in
porosity, the crushing index, and water absorption, and a weak interfacial transition zone.
Generally, the root cause of the problems with RA mentioned above is that aggregates
are produced from crushed and discarded concrete blocks, making them angled, sharp,
and porous on the surface [3,4]. Therefore, more work is required in order to develop
the standards and to reduce the effects of the hydrated paste that sticks to the surface of
crushed coarse aggregate in an economically feasible way.

Based on the research findings, the usage of RA is limited due to the lack of structural
standards for RA [5]. It may be that an insignificant amount of construction waste is
recycled or used as a substitute to construct the naturally sourced materials. The adaptation
of CDW materials as a substitute for natural aggregate has become a circular economy
priority. Globally, about 20 billion tons of natural resources are used each year to produce
fresh concrete; over the next 20 to 30 years, that amount is predicted to triple. However,
the demolition of existing buildings produces a significant amount of solid waste. It
makes up 20 to 40% of the total waste and has been identified as one of the world’s most
prominent environmental contaminants [6]. This waste, which takes up usable landfill
areas, also constitutes a health risk. Using RA instead of natural aggregate (NA) offers
a viable answer to the problems of resource exploitation, the restoration of land spaces,
and decreasing waste in landfills [7]. Moreover, RA is a natural aggregate substitute that
supports sustainable construction.

However, the complete substitution of NA with RA causes the strength characteristics
of the concrete to deteriorate. Although RA substitution has been found to deteriorate the
mechanical characteristics of concrete, it has been claimed that recycled concrete aggregate
(RCA) is unaffected by the compressive strength of recycled aggregate concrete up to the
30 percent by weight substitution level, after which it decreases [8]. The harmful effects
of RA have been minimized by various methods over the past few decades. Some of the
treatment techniques for the improvement of RA are NO2-sequestered recycled concrete
aggregate [9], the replacement of cement with a combination of recycled aggregate and
crushed reclaimed concrete [10], the liquid–solid carbonation process [11], recycled ag-
gregate with a crystallization agent [12], the substitution of various admixtures, such as
GGBS, fly ash, bottom ash, silica fume, and nano-silica, in the cement, the combination
of nano-silica and titanium oxide, precoating the recycled aggregate with a calcium hy-
droxide solution [13], the chemical–thermal treatment [14], and fluidity-based recycled
aggregate mortar [15]. Still, cost-effective and environmentally friendly RA improvement
techniques must be devised as a possible alternative in order to increase the use of RA in
concrete applications.

As a result, comparative feasibility analysis is critical in focusing the research on a
simple narrow path to strengthen the various properties of recycled concrete aggregate
in a cost-effective and simplified manner. The enormous number of articles published
annually on recycled concrete aggregate provide the experimental analysis for structural
applications. From 1995 onwards, the amount of research on waste concrete and the
number of publications increased yearly. Until 2004, less than 10 articles relevant to
recycled aggregate were published each year. The increasing interest in RCA research and
the number of publications are shown in Figure 1. In 2020, the number of articles published
was the highest (293). The research in 2020 mainly focused on water absorption and chloride
penetration [16], rice husk ash substitution [17], fly ash and ground granulated blast furnace
slag (GGBS) [18], and the addition of blended pozzolanic materials [19]. In 2021, until
the 10 September, 242 articles had been published. These are focused on concrete with
RCA [20], the bond behavior of RCA with basalt-fiber-reinforced polymer bars [21], and
transport properties [22]. This trend appears promising and indicates that RCA research
has been active for more than five decades. Due to the scale-up of the circular economy,
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researchers have focused mainly on recycled aggregate materials, and it has been proven
that the growth of published articles has tended to increase exponentially.
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The annual generation of CDW in some countries, such as China [23], the United
States [24], India [25], Australia [26], England [27], the European Union [28], France [29],
and Italy [30], is shown in Figure 2. The recycling rate is higher in the United States; of the
600 MT of building and demolition waste, around 75% is recycled. In China, it has been
stated that less than 40% of the CDW is recycled [23]. In addition, just 1% of India’s CDW
is recovered and recycled. In order to safeguard the environment and to reduce natural
material exhaustion, appropriate handling techniques for CDW are necessary.
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Significance of the Review

This literature review provides valuable information regarding the utilization of RA
in concrete applications. This comparative review on RA aims to provide crystal-clear
information about the variation in physical and chemical properties of different types of
recycled aggregates. Additionally, this study explains the quantitative information about
how the treatment methods improve the inferior properties of recycled aggregates, the
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fresh and mechanical properties of concrete, and durability aspects for fine and coarse
aggregate substitution. Furthermore, a scientometric review on recycled aggregate concrete
between 2012 and 2021 provides valuable information about the most minor and most
studied areas, which may act as a roadmap for research on recycled aggregate concrete.

2. Literature Review on Recycled Aggregate
2.1. Composition of Recycled Aggregate

Recycled aggregate (RA) has different categories, including recycled concrete aggre-
gate (RCA), fine recycled concrete aggregate (FRCA), recycled ceramic aggregate, recycled
masonry aggregate (RMA), coarse mixed recycled aggregate (CMRA), and fine mixed
recycled aggregate (FMRA). RA is mainly composed of SiO2, CaO, and minor oxides. The
quantities of the different chemical compositions identified by various authors are shown
in Table 1 and are comparable with natural aggregate’s composition. Calcite is a prominent
mineral in recycled aggregate, but “quartz, alkali feldspars, muscovite, and dolomite” have
also been recognized [31]. Similar results show the presence of crystalline phases such
as quartz and calcite in RA samples compared with natural aggregate [32]. The presence
of crystalline phases is consistent with the finding of quartz and calcite in the recycled
aggregate’s X-ray Diffraction (XRD) pattern, as shown in Figure 3. In fine natural aggregate,
the resulting peak position in the XRD pattern revealed the existence of the crystalline
compound SiO2. The occurrence of SiO2 might be a helpful circumstance for developing a
calcium hydrate gel that enhances the concrete’s strength. Two significant peaks of SiO2
and CaCO3 can be seen in the fine recycled aggregate’s XRD pattern. The feasibility of
substituting RA as an appropriate alternative for NA has been indicated due to the presence
of the crystalline component SiO2. Additionally, the peak of CaCO3 can be seen because of
the old hardened paste’s adhesion to the surface of the FRA [33].

Table 1. Major components of recycled aggregate from the literature.

Literature Aggregate Type Country SiO2
(%)

CaO
(%)

Al2O3
(%)

Nedeljkovi et al. [34] FRCA Netherland 66.4 21.5 5.0

Alexandridou et al. [31]

FMRA
Northern Greece

34.3 27.52 6.4

CMRA 18.4 39.5 3.6

FMRA
Southern Greece

10.9 45.2 2.03

CMRA 8.3 47.6 1.7

Moreno-Pérez et al. [35]
FMRA

Canada
51.5 19.6 13.7

CMRA 51.1 23.3 13.2

Angulo et al. [36]
FMRA

Brazil
73.9 5.45 7.0

CMRA 67.1 7.8 9.8

Kirthika et al. [37] FMRA India 68.9 4.5 11.5

Silva et al. [32] CMRA Brazil 52.4 15.6 11.6

Sivamani et al. [33] FMRA India 71.2 14.13 5.51
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Figure 3. XRD pattern of NA and RA from pavement and building waste [38].

Secondary electron images from scanning electron microscopy of the NA and RA are
shown in Figure 4 and can be used to confirm the morphology and interfacial zone of the
recycled aggregate. It is feasible to distinguish between the RA and NA in the images
produced by scanning electron microscopy. Aggregates made from recycled materials
are less durable than aggregates made from natural materials. Recycled aggregates have
a diverse, erratic, and inconsistent microstructure. Recycled crushed concrete is coated
mainly with fine fractions and old cement mortar [39]. The coarse recycled aggregate
has a rough surface with sharp edges, and a portion of the outer layer is bound with old
mortar with cracks and surface defects. The scanning electron microscopy images show the
angularity in both manufactured sand and FRA particles. Both aggregates show that the
increased number of angular parts is due to the crushing process during the production of
RA from CDW. In addition, the presence of hardened cement paste on the outer part of the
RA is evidenced.
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2.2. Treatment of Recycled Aggregate

Here, we discuss the change in the aggregate’s attributes after it is used in concrete,
various ways different authors have improved the destructive properties, and the extent to
which the properties improved. The physical properties of untreated recycled aggregate
are shown in Table 2. Additionally, the enhancement of the physical properties due to
various treatments is shown in Table 3. Although the recycled aggregate from lower-
grade concrete had a more porous structure, adding more cement paste to the carbonation
treatment was beneficial. The carbonation treatment can effectively increase the mortar’s
adhesion to aggregates if the aggregate surface area is increased. The carbonation treatment
produced a reduction in the water absorption and crushing values of 22.6–28.3% and
7.6–9.6%, respectively. The workability of the concrete was improved when recycled
particles absorbed less water [41]. The properties of the supplementary cementitious
materials (SCMs) added to the recycled aggregate concrete improved when the two-stage
mixing approach (TSMA) was used. The recycled aggregate had a water absorption rate
of 6.1% at first. Then, the SCM was added to the recycled concrete and it reduced the
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water absorption rate by 2–8%. The TSMA technique also effectively reduced the water
absorption rate [42]. A previous study revealed that the water absorption rate of 0.81% in
natural aggregate (NA) increased to 5.32% in recycled concrete aggregate (RCA). After a
hydrochloric acid immersion treatment, the water absorption rate was reduced by 17.11%
in the RCA. Impregnation with calcium meta-silicate (CM) reduced the water absorption
rate by 18.08%. In addition, the aggregate impact value increased from 14% to 23% in the
recycled coarse aggregate. The acid and CM treatments reduced the crushing value to
13.05% and 17.4%, respectively, in the treated aggregates [43].

Table 2. Physical properties of recycled aggregate.

Literature Size (mm) Aggregate
Type

Unit
Weight
(kg/m3)

Specific
Gravity

Water
Absorption

(%)

Crushing
Value

(%)

Flakiness
Index
(%)

Hamada et al. [44]
4.75–25.4 RCA 1389 2.29 5.1 - -

4.75–12.7 RCA 1376 2.35 4.8 - -

Yu et al. [37] 4–16 RCA 1230 3.21 21.26 -

Kumar et al. [45] <4.75 FMRA 1290 2·08 11·91 - -

Cantero et al. [46]
12–22 MRA - - 5.27 - 10

6–12 MRA - - 6.28 - 10

Yan et al. [32]
5–26.5 MRA 1169 - 3.02 15.6 -

5–26.5 RMA 877 - 11.14 28.8 -

Meng et al. [32]
9.75–31.5 MRA - - 8.8 18 -

0–9.5 FMRA - - 13.2 22 -

Sim et al. [47]
5–25 RCA - 2.55 1.68 - -

0.15–5 FRCA - 2.28 6.45 - -

Guo et al. [48]
5–31.5 RCA 1405 - 3.8 - -

0.15–5 FRCA 1482 - 5.5 - -

Raman et al. [49] 4.75–20 RCA 1480 2.41 3.52 38.39

Babalola et al. [50] 4.75–25 RCA 1490 2.35 5.2 - -

Saleem Kazmi et al. [33] 4.75–20 RCA 1414 2.55 6.85 31 -

Mahmood et al. [51] 20–15 (40%)
15–5 (60%) RCA - 2.43 4.5 47.82 -

Table 3. Improvements in the physical properties of recycled aggregate.

Literature
Aggregate

Type
Treatment
Methods

Before
Treatment

After
Treatment

Effects on Enhancement
WA (%), Density (ρ)

(kg/m3)

Zhan et al. [52] RCA
Carbonation

(Optimum treatment duration,
7 days; Pressure, 1 bar)

WA: 7.52 WA: 5.76 The treatment induced the
carbonation of portlandite,

resulting in an increase in calcium
carbonates that filled the pore

gaps and increased the density of
the microstructure.

ρ: 2636 ρ: 2700

Zeng et al. [53] MRA

Soaking in a nano-silica
suspension of 15% nano-silica

particles by weight.
(Optimum, 1 h of soaking)

WA: 8.22 WA: 7.38 The surface of the recycled
aggregate would be penetrated

and altered by nano-silica
particles, increasing the density of

the concrete microstructure.
ρ: 2566 ρ: 2588
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Table 3. Cont.

Literature
Aggregate

Type
Treatment
Methods

Before
Treatment

After
Treatment

Effects on Enhancement
WA (%), Density (ρ)

(kg/m3)

Al-Waked et al.
[54]

MRA

Accelerated carbonation
(5 days of carbonation

treatment, 50% CO2
concentration)

WA: 6.1 WA: 3.3

This enhancement occurs due to
the transformation of portlandite
to calcite and the development of
amorphous carbonation products.

Pretreatment using sodium
silicate–silica fume solution

(Optimum replacement level,
5%; soaking time, 4 h)

WA: 6.1 WA: 4.1

Immersion in a pozzolanic
solution fills the pores of the RA
and forms a C-S-H gel by mixing
with CH crystals that fill the gaps

in the recycled aggregate.

Al-Bayati et al. [55] RCA

Heat treatment
(Optimum heating, 350 ◦C) WA: 5.91 WA: 5.35

High temperatures between 400
and 600 ◦C make the aggregate
experience internal stress due to

thermal expansion.

Soaking in HCl
(0.1 M for 24 h) WA: 5.91 WA: 5.66 A strong acid does not reduce the

impact of acid attacks as
effectively as a mild acid.CRCA soaking in acetic acid

(0.1 M for 24 h) WA: 5.91 WA: 5.79

Wang et al. [12] RCA

Treatment with a water-based
liquid crystallizing agent

(Optimum immersion, 7 d;
aggregate/solution

ratio, 2 kg/L)

WA: 7.13 WA: 2.96

When a crystallizing agent was
added, C-S-H formed and

minimized the porosity of the
recycled concrete aggregate

Damrongwiriyanupap
et al. [56]

RCA

Coating with cement paste WA: 7.54 WA: 3.25
The development of calcium

silicate hydrate can fill the gaps in
the RCA.

Coating with a high-calcium
fly ash paste that has been

alkali-activated
(10 M NaOH and Na2SiO3)

WA: 7.54 WA: 2.10
Unreacted cement grains in the
RCA might react with water, fly

ash, dolomite, SiO2, and Al2O3 to
create hydration products at the

interfacial transition zone.

Alkali activation of fly ash
paste regulated by
a dolomite coating

(10 M NaOH and Na2SiO3.
The dolomite was oven dried

at 100 ◦C)

WA: 7.54 WA: 2.55

The carbonation treatment and the addition of pozzolanic slurry (nano-SiO2, silica
fume, and fly ash slurry) reduced the water absorption rate by 21–26% and increased the
density of the RCA [57]. The combination of a superfine powder (fly ash, phosphorous
slag, and GGBS) and a superplasticizer was found to correct the defects and fill the space
between the cement particles in RCA [58]. An acid, such as H2SO4, works more efficiently
than hydrochloric acid (HCl) at a concentration of 0.1 moles. The maximum achieved
reduction in the water absorption rate of RCA was 0.92 for HCl, 0.81 for H2SO4, 0.93 for
scrubbing and heating, and 0.78% for scrubbing compared with 1.56% for untreated RCA.
In the heating–scrubbing mechanism, concrete debris was heated in an oven to over 300 ◦C
for up to 24 h and then allowed to cool, making the cement paste brittle. Subsequently,
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mechanical rubbing was performed in a Los Angeles abrasion machine for a few minutes
to achieve a more significant reduction in the water absorption rate, which was about 0.78%
compared with the untreated RCA (1.56%). Nevertheless, the water absorption rate of the
treated RA was still higher than that of NA [59].

The immersion of RCA in a crystallization agent was carried out with 2 kg of aggregate
in a 1 l solution at around 25 ◦C. After a one-day immersion period, the RCA’s absorption
nature had been lowered by 24.82%. After a seven-day immersion period, it was further
reduced by 58.49% compared with the untreated RCA’s absorption rate (7.13%). The one-
day and seven-day period of immersion in a crystallization agent reduced the relative
surface roughness from 106.8% (natural aggregate) to 100.2% and 93.6%, respectively [12].
The water absorption (WA) of the treated RCA at an acetic acid concentration of 1% during
a one-day immersion period was reduced by 16.97% compared with untreated RCA. The
WA of RCA was optimally lowered with a concentration of acetic acid of 1% and a one-
day immersion period. The aggregate’s characteristics (specific gravity, density, and WA)
were primarily selected to produce the ideal concrete mix [60]. These characteristics were
improved by adopting various treatment methods or production processes to utilize RCA
at a higher replacement percentage in ordinary concrete.

The adhered mortar in RCA is a significant problem as the greater porosity leads
to an increase in the WA. The surface treatment method may reduce or strengthen the
loose mortar particles, improving the qualities of recycled aggregates considerably. The
properties of RCA are determined by the elongation index, the crushing value, the amount
of old mortar, and the grade of the old concrete. The mechanical grinding of the attached
mortar off the RCA’s surface within a drum mixer, together with the addition of water,
can help to weaken the adhered mortar. This grinding method is comparable to the Los
Angeles abrasion test but does not use steel spheres [61]. RCA’s physical and mechanical
properties can be enhanced by mechanical abrasion. Silica fume impregnation can reduce
the permeability by filling the voids in the recycled aggregate [62]. With the help of a lime
treatment, much more progress can be made. Quicklime can be mixed with water in the
RCA treatment to make a lime solution. Initially, the grinding of RCA in a Los Angeles
abrasion machine for a duration of 5 min, followed by treatment with a lime solution not
exceeding 2 N, is recommended for the removal of the maximum amount of old or adhered
mortar [63].

Other alternatives include HCl and sodium sulphate (Na2SO4) in a proportion between
the aggregate and the solution of 1:4.5. These treatments have been proven to dislodge
previously bonded mortar from RCA. Between these treatments, the HCl pretreatment is a
more effective treatment method. However, to optimize the waste management system,
the reusability of pretreatment solutions must be assessed [64]. For example, a mix of 15%
waste concrete power (WCP) and 15% spontaneous combustion gangue powder (SCGP)
provides the characteristic of impermeability due to the increased pozzolanic activity of
SCGP and WCP [65].

Similarly, modification methods such as mild acetic acid treatment followed by me-
chanical grinding [66], the spraying of nano-silica on the mixed recycled aggregate fol-
lowed by soaking in a polymer [67], bio-cement treatment [68], wastewater-enhanced flow-
through carbonation [69], the addition of a cement paste dissociation agent [70], the mineral
addition treatment method with silica fume, and the equivalent mortar volume method [71]
have been used by various researchers to enhance the inferior properties of RCA. These
methods were developed to produce recycled aggregate concrete with improved properties.
It is necessary to build a cost-effective and environmentally friendly approach, as this
would be a practical way to utilize recycled aggregate in concrete applications.

2.3. Fresh Concrete Properties

Since recycled aggregate has different properties compared with natural aggregate, it
reacts differently in fresh concrete mixes, resulting in differences in the amount of mixing
water required, the fresh density, and the concrete’s workability. The variation in the
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workability of RA is shown in Table 4. The variation in performance between the fresh
properties of RA concrete and conventional NA concrete is discussed in this section. The
two-stage mixing approach reduces the workability because of the prolonged mixing
period and increases the absorption of the recycled aggregates. However, TSMA together
with supplemental cementitious ingredients was found to improve the RCA concrete’s
workability [42].

Table 4. Effect of recycled aggregate on workability.

Reference W/C Ratio Aggregate Type Replacement
Level (%)

SP Dosage (%) and
Type of SP

With or
Without

Admixture

Slump
Value
(mm)
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Consequently, as the replacement level of recycled fine aggregate (RFA) increased, the
quantity of mixing water also increased. The amount of water to be mixed increased by
12.30, 23.29, and 34.29% with an RFA replacement level of 0, 50, and 100%, respectively [76].
This was because of the increased water absorption of the RFA, which was 11.91% compared
with that of the fine natural aggregate (0.94%). The workability of the recycled aggregate
was lower than that of the NA due to its higher water absorption rate. However, the
HCl-treated RA obtained a maximum workability of 90 mm, which was greater than that
of the untreated RAC concrete (65 mm) [59]. Since the carbonation decreased the water
absorption of the RCA, the mortar in the carbonated RCAs had superior flowability. On the
other hand, the increased addition of recycled aggregate in conventional concrete showed
a reduction in the workability from 45 to 20 mm at a constant replacement level of 6.5%
metakaolin. The reduction in workability occurred due to the incorporation of pozzolanic
materials that disrupt its bonding networks [77].

The fluidity of the mixes decreased by around 32 and 17% after treating RCA with
silica fume and nano-SiO2 slurries. This decrease in fluidity was due to the fine coating
of pozzolanic materials on the surface of the RCA, which absorbed some of the mixing
water and left a smaller amount of free water in the concrete mixes. However, the silica
fume grains that had adhered to the outer surface of the recycled aggregate increased the
workability by preventing some of the water from permeating into the pores present in the
RA, increasing the quantity of free water in the mixture. Additionally, the reduction in the
workability of the concrete was around 12% and 24% at a 50% replacement level of RFA
and RFA along with GGBS, respectively. Compared with conventional concrete, the 50%
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RFA specimens with 70% SCM (23% fly ash and 47% GGBS) increased the workability by
40% [78]. The different behavior of the RCA in the fresh state was due to the aggregate
absorbing more water and having the weakest mortar. However, with treatment methods
with a proper mix design and modifications in the water-to-cement ratio, it would be
feasible to make concrete with the necessary workability.

2.4. Properties of Hardened Concrete

It is crucial to understand how various proportions of recycled aggregate affect the
concrete’s strength properties and to predict how the concrete will behave in structural
components. Table 5 reports the hardened properties of RA concrete in comparison with
conventional concrete. The different treatment methods improved the hardened properties
of the RA. The nano-silica-coated RA, treated at an optimum concentration of 2% for 48 h,
improved the hardened properties even at a replacement level of 100% due to the increased
hardness, the decreased water absorption, and the reduced number of pores present in the
RA [79]. The reinforcement of the recycled aggregate concrete with the dispersion of basalt
fibers improved the RA’s inferior properties, strengthening the interfacial transition of the
RA [80]. In addition, the replacement of construction waste can be utilized in the form of
ground carbonated reactive MgO cement to produce fresh reactive MgO cement in order to
increase the utilization of construction waste. The use of carbonated reactive MgO cement
at a replacement level of 20% could improve the RA’s detrimental properties due to the
formation of amorphous hydrated phases [81]. Although RA behaves heterogeneously, the
studies reveal that the mechanical properties could be enhanced even with high recycled
aggregate content.

Table 5. Studies on the hardened properties of concrete.

SI. No Literature Replacement
Level (%) Additives Effects on Strength Parameters

1. Hamad et al. [44] 0, 40, and100 –

CS *: 33.4, 30.7, and 29.5 MPa
STS **: 4.98, 4.56, and 4.37 MPa
Modulus of elasticity: 31,602.1, 27,130.7,
and 28,596.8 MPa
Flexural strength: 196.8, 213.7,
and 227.2 kN
Shear strength: 162.9, 162.8, and 159.3 kN
Bond strength: 119.2, 137.9, and 121.2 kN
for 0, 40, and 100% RCA, respectively.

2. Zhang et al. [41] 100% RCA Carbonation treatment
Carbonated aggregate showed 15 and
10% higher CS 7 and 28 days after
treatment, respectively.

3. Faysal et al. [42] 60% RCA

SCM with a two-stage mixing
approach (TSMA and SCM

containing fly ash (20%), GGBS
(20%), and silica fume (7%)

Silica fume containing a concrete mixture

• Maximum CS: 56.3 MPa
• Maximum STS: 3.1 MPa

4. Sunayanaet al. [82] 100% RA 20 and 30% fly ash

RAC with 30% fly ash reduced:

• The CS by 6%;
• The STS by 28%;
• The modulus of elasticity by 12%.
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Table 5. Cont.

SI. No Literature Replacement
Level (%) Additives Effects on Strength Parameters

5. Guo et al. [83] 50 and 100%
RCA

50 and 75% by weight of
quaternary cementitious

materials: cement, fly ash (FA),
slag, and silica fume (SF)

100% recycled aggregate concrete with
quaternary cementitious materials
increased the CS:

• At the 50% replacement level
by 12.6%;

• At the 75% replacement level by
over 35 MPa

• In the ternary mix (fly ash and slag)
by 83% to 174%;

• In the quaternary mixes by
123% to 496%.

6 Gholampour et al. [78] 50% RFA GGBS and fly ash

The RFA50 mix with 35% GGBS increased
the CS:

• At 7 days by 35.7%;
• At 28 days by 36.3%.
The RFA50 mix with FA23% and
GGBS47% increased:

• The modulus of elasticity (Ec)
by 6.5%;

• The STS by 7.3%.
FA mixes showed a higher water
absorption rate, and GGBS mixes showed
a lower water absorption rate in the
concrete specimens.

7. Kumar and Singh [84] RCA at 0, 25, 50,
75, and 100%

10% coal bottom ash and 50%
fly ash

RCA specimens with 50% fly ash and 10%
coal bottom ash reduced:

• The CS by 4%, 8%, 11, and 9%;
• The STS by 10, 17, 26, and 20%
for the 25, 50, 75, and 100% replacement
levels, respectively, at 90 days.

* CS, compressive strength; ** STS, splitting tensile strength.

Figures 5 and 6 show the variation in compressive and split tensile strength results after
a curing period of 28 days in various studies. The effective use of recycled CDW in concrete
production enhanced the circular economy and the consequences of that practice for a
sustainable flow of resources. Mixed recycled aggregates (MRAs) comprise a substantial
proportion of the total construction and demolition waste. The biggest obstacle to MRA
recovery and recycling is its non-uniformity and several inherent qualities that directly
affect the concrete’s performance. The results of earlier studies indicate that the surface
treatment caused a reduction in the water absorption rate of the MRA and improved its
abrasion resistance. The treated MRA did not exhibit much of an enhancement in the
mechanical properties, but the durability was found to be greatly enhanced [85]. From an
engineering standpoint, recycled aggregate does not impede structural concrete members
as the strength parameters of the RA keep improving.
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2.5. Supplementary Cementitious Materials

The different supplementary cementitious materials exhibited improved performance
in the recycled aggregate concrete. This section explains how authors utilized various
additives and the ideal replacement proportion at which they work best. Based on the
reported results, Table 6 summarizes the significance of the inclusion of coarse and fine
recycled aggregates on the strength and durability properties. The improvement in strength
was achieved with fly ash (FA) only at a later age (after 90 days). Unlike FA, the addition
of GGBS and silica fume (SF) increased the early strength compared with the control mix.
The early strength increases brought about by the addition of GGBS are due to sufficient
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amounts of lime and silica, which cause the GGBS to hydrate like Ordinary Portland
Cement (OPC). When adding a small amount of SF (7% only) to RAC, the compressive
strength of the concrete increased at an early curing age because of its capacity to permeate
into the pores. SF is one of the most efficient materials and causes a 53% reduction in the
permeability of chloride ions. FA, which has a higher alumina concentration, can mitigate
the penetration of chloride ions, resulting in concrete with a higher electrical resistivity
value compared with GGBS. Even though metakaolin is a pozzolana with 60.07% silica
oxide, which is very high compared with OPC, the addition of 6.5% metakaolin to the
recycled concrete aggregate mix showed no effect.

Table 6. Variation in the strength and durability of recycled aggregate concrete.

Literature

Aggregate
Type and

Replacement
Level

Admixture
Dosage and

Grade or
W/C of

Concrete

Admixture/
RA

Optimum
Dosage

CS
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(%) (%) (%) MPa at 28 Days Coulombs mm or %

Dimitriou et al. [93]

MRA (0, 50,
100) W/C: 0.48 - Up to 47.1

(−34.7%)
Up to 3.1
(−26.2%)

Up to 6.6
(−23.6%)

Up to 5248
(+51.1%) -

MRA
(100)

FA: 25 - 35.6
(−50.6%)

2.0
(−52.4%)

6.3
(−26.7%)

Up to 5303
(+52.7%) -

FA: 25 and
SF: 5 - 38.2

(−47%)
2.2

(−47.6%)
6.3

(−26.7%)
Up to

(−0.2%) -

Sivamani et al. [33]
FMRA

0, 25, 50,
100

W/C: 0.45 25 Up to 30.45
(−22.1%)

Up to 3.0
(−22.1)

Up to 3.86
(−11.9%)

Up to 4200
(+90.9%)

Up to 6.73%
(+31.4%)

Khan et al. [88]
RCA

0, 30, 50,
70, 100

W/C: 0.43 30 Up to 22.22
(−26.5%)

Up to 3.65
(−35.4%)

Up to 4.03
(−38.5%) -

Up to
30 mm

(+200%)

Cantero et al. [94]
MRA

0, 25, 50
75, 100

Grade:
30 MPa 75 Up to 47.78

(−6.6%) - - -
Up to

17 mm
(+36%)

Yan et al. [95] RCA
0, 30, 50, 100

W/C: 0.45 - Up to 32.2
(−29.2%) - - - -

calcined
nano-

attapulgite
(CNAT): 2, 4,

6, 8

CNAT: 6%,
RCA 50%

2% CNAT:
Up to 35.3
(−27.2%)
4% CNAT:
Up to 37.5
(−24.7%)
6% CNAT:
Up to 38.5
(−19.9%)

10% CNAT:
Up to 38.8
(−13.4%)

- - - -

Bhasya et al. [89] RCA
0, 50, 100

Grade: 30
MPa - Up to 31.74

(−17.0%) - - Up to 3386
(+51.7%)

Up to
6.49%

(+54.5%)

Saravanakumar
et al. [96]

RCA
0, 25, 50, 100

Grade: 50
MPa - Up to 33.78

(−37.1%)
Up to 3.21

(−34.4) - - -

Fly ash (FA):
40, 50, 60

50%FA and
50% RCA

FA40%: Up to
27.41

(−26.3%)
FA50%: Up to

26.74
(−19.7%)

FA60%: Up to
22.23

(−17.1%)

FA40%: Up
to 3.0

(−26.8%)
FA50%: Up

to 2.63
(−29.1%)

FA60%: Up
to 2.25

(−30.6%)

- - -
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Consequently, as the replacement level of recycled fine aggregate (RFA) increased, 
the quantity of mixing water also increased. The amount of water to be mixed increased 
by 12.30, 23.29, and 34.29% with an RFA replacement level of 0, 50, and 100%, respectively 
[76]. This was because of the increased water absorption of the RFA, which was 11.91% 
compared with that of the fine natural aggregate (0.94%). The workability of the recycled 
aggregate was lower than that of the NA due to its higher water absorption rate. However, 
the HCl-treated RA obtained a maximum workability of 90 mm, which was greater than 
that of the untreated RAC concrete (65 mm) [59]. Since the carbonation decreased the wa-
ter absorption of the RCA, the mortar in the carbonated RCAs had superior flowability. 
On the other hand, the increased addition of recycled aggregate in conventional concrete 
showed a reduction in the workability from 45 to 20 mm at a constant replacement level 
of 6.5% metakaolin. The reduction in workability occurred due to the incorporation of 
pozzolanic materials that disrupt its bonding networks [77]. 

The fluidity of the mixes decreased by around 32 and 17% after treating RCA with 
silica fume and nano-SiO2 slurries. This decrease in fluidity was due to the fine coating of 
pozzolanic materials on the surface of the RCA, which absorbed some of the mixing water 
and left a smaller amount of free water in the concrete mixes. However, the silica fume 
grains that had adhered to the outer surface of the recycled aggregate increased the work-
ability by preventing some of the water from permeating into the pores present in the RA, 
increasing the quantity of free water in the mixture. Additionally, the reduction in the 
workability of the concrete was around 12% and 24% at a 50% replacement level of RFA 
and RFA along with GGBS, respectively. Compared with conventional concrete, the 50% 
RFA specimens with 70% SCM (23% fly ash and 47% GGBS) increased the workability by 
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the quantity of mixing water also increased. The amount of water to be mixed increased 
by 12.30, 23.29, and 34.29% with an RFA replacement level of 0, 50, and 100%, respectively 
[76]. This was because of the increased water absorption of the RFA, which was 11.91% 
compared with that of the fine natural aggregate (0.94%). The workability of the recycled 
aggregate was lower than that of the NA due to its higher water absorption rate. However, 
the HCl-treated RA obtained a maximum workability of 90 mm, which was greater than 
that of the untreated RAC concrete (65 mm) [59]. Since the carbonation decreased the wa-
ter absorption of the RCA, the mortar in the carbonated RCAs had superior flowability. 
On the other hand, the increased addition of recycled aggregate in conventional concrete 
showed a reduction in the workability from 45 to 20 mm at a constant replacement level 
of 6.5% metakaolin. The reduction in workability occurred due to the incorporation of 
pozzolanic materials that disrupt its bonding networks [77]. 

The fluidity of the mixes decreased by around 32 and 17% after treating RCA with 
silica fume and nano-SiO2 slurries. This decrease in fluidity was due to the fine coating of 
pozzolanic materials on the surface of the RCA, which absorbed some of the mixing water 
and left a smaller amount of free water in the concrete mixes. However, the silica fume 
grains that had adhered to the outer surface of the recycled aggregate increased the work-
ability by preventing some of the water from permeating into the pores present in the RA, 
increasing the quantity of free water in the mixture. Additionally, the reduction in the 
workability of the concrete was around 12% and 24% at a 50% replacement level of RFA 
and RFA along with GGBS, respectively. Compared with conventional concrete, the 50% 
RFA specimens with 70% SCM (23% fly ash and 47% GGBS) increased the workability by 
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by 12.30, 23.29, and 34.29% with an RFA replacement level of 0, 50, and 100%, respectively 
[76]. This was because of the increased water absorption of the RFA, which was 11.91% 
compared with that of the fine natural aggregate (0.94%). The workability of the recycled 
aggregate was lower than that of the NA due to its higher water absorption rate. However, 
the HCl-treated RA obtained a maximum workability of 90 mm, which was greater than 
that of the untreated RAC concrete (65 mm) [59]. Since the carbonation decreased the wa-
ter absorption of the RCA, the mortar in the carbonated RCAs had superior flowability. 
On the other hand, the increased addition of recycled aggregate in conventional concrete 
showed a reduction in the workability from 45 to 20 mm at a constant replacement level 
of 6.5% metakaolin. The reduction in workability occurred due to the incorporation of 
pozzolanic materials that disrupt its bonding networks [77]. 

The fluidity of the mixes decreased by around 32 and 17% after treating RCA with 
silica fume and nano-SiO2 slurries. This decrease in fluidity was due to the fine coating of 
pozzolanic materials on the surface of the RCA, which absorbed some of the mixing water 
and left a smaller amount of free water in the concrete mixes. However, the silica fume 
grains that had adhered to the outer surface of the recycled aggregate increased the work-
ability by preventing some of the water from permeating into the pores present in the RA, 
increasing the quantity of free water in the mixture. Additionally, the reduction in the 
workability of the concrete was around 12% and 24% at a 50% replacement level of RFA 
and RFA along with GGBS, respectively. Compared with conventional concrete, the 50% 
RFA specimens with 70% SCM (23% fly ash and 47% GGBS) increased the workability by 

RCPT

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 28 
 

mixing water required, the fresh density, and the concrete’s workability. The variation in 
the workability of RA is shown in Table 4. The variation in performance between the fresh 
properties of RA concrete and conventional NA concrete is discussed in this section. The 
two-stage mixing approach reduces the workability because of the prolonged mixing pe-
riod and increases the absorption of the recycled aggregates. However, TSMA together 
with supplemental cementitious ingredients was found to improve the RCA concrete’s 
workability [42]. 

Table 4. Effect of recycled aggregate on workability. 

Reference W/C Ratio Aggregate Type Replacement 
Level (%) 

SP Dosage (%) and 
Type of SP 

With or Without 
Admixture 

Slump  
Value 
(mm) 

Tangchirapat et al. 
[72] 

0.48 

CRCA 

Up to 100 - 

- 
Up to 70 
(+16.7%) 

FRCA + CRCA - 
Up to 50 
(−16.7%) 

CRCA FA up to 50% 
Up to 100 
(+42.8%) 

FRCA + CRCA FA up to 50% 
Up to 90 
(+80.0%) 

Kumar et al. [45] 0.42 FMRA Up to 100 
0·25 (polycarboxylate 

ether) 
- 

Up to 40 
(−48.7%) 

Chih Fan et al. [73] 
0.35 

FRCA Up to 100 1 (type G) 
- 

Up to 180 
(−10.0%) 

0.55 - 
Up to 195 
(−9.7%) 

de Andrade et al. 
[74] 

0.45 FRCA Up to 100 0.4 (Glenium 51) - 
Up to 165 
(+153.8%) 

Cantero et al. [75] 0.45 MRA Up to 100 
1.55 (water-based pol-

ycarboxylate) 
- 

Up to 140 
(+27.27%) 
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the quantity of mixing water also increased. The amount of water to be mixed increased 
by 12.30, 23.29, and 34.29% with an RFA replacement level of 0, 50, and 100%, respectively 
[76]. This was because of the increased water absorption of the RFA, which was 11.91% 
compared with that of the fine natural aggregate (0.94%). The workability of the recycled 
aggregate was lower than that of the NA due to its higher water absorption rate. However, 
the HCl-treated RA obtained a maximum workability of 90 mm, which was greater than 
that of the untreated RAC concrete (65 mm) [59]. Since the carbonation decreased the wa-
ter absorption of the RCA, the mortar in the carbonated RCAs had superior flowability. 
On the other hand, the increased addition of recycled aggregate in conventional concrete 
showed a reduction in the workability from 45 to 20 mm at a constant replacement level 
of 6.5% metakaolin. The reduction in workability occurred due to the incorporation of 
pozzolanic materials that disrupt its bonding networks [77]. 

The fluidity of the mixes decreased by around 32 and 17% after treating RCA with 
silica fume and nano-SiO2 slurries. This decrease in fluidity was due to the fine coating of 
pozzolanic materials on the surface of the RCA, which absorbed some of the mixing water 
and left a smaller amount of free water in the concrete mixes. However, the silica fume 
grains that had adhered to the outer surface of the recycled aggregate increased the work-
ability by preventing some of the water from permeating into the pores present in the RA, 
increasing the quantity of free water in the mixture. Additionally, the reduction in the 
workability of the concrete was around 12% and 24% at a 50% replacement level of RFA 
and RFA along with GGBS, respectively. Compared with conventional concrete, the 50% 
RFA specimens with 70% SCM (23% fly ash and 47% GGBS) increased the workability by 
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Consequently, as the replacement level of recycled fine aggregate (RFA) increased, 
the quantity of mixing water also increased. The amount of water to be mixed increased 
by 12.30, 23.29, and 34.29% with an RFA replacement level of 0, 50, and 100%, respectively 
[76]. This was because of the increased water absorption of the RFA, which was 11.91% 
compared with that of the fine natural aggregate (0.94%). The workability of the recycled 
aggregate was lower than that of the NA due to its higher water absorption rate. However, 
the HCl-treated RA obtained a maximum workability of 90 mm, which was greater than 
that of the untreated RAC concrete (65 mm) [59]. Since the carbonation decreased the wa-
ter absorption of the RCA, the mortar in the carbonated RCAs had superior flowability. 
On the other hand, the increased addition of recycled aggregate in conventional concrete 
showed a reduction in the workability from 45 to 20 mm at a constant replacement level 
of 6.5% metakaolin. The reduction in workability occurred due to the incorporation of 
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(+142%)

Silica fume
(SF): 5, 10 10% SF

SF 5:
Up to 28.8

(−28%)
SF 10:

Up to 28.8
(−38.1%)

SF 5:
Up to 2.6
(−13.1%)

SF 10:
Up to 2.5
(−21.0%)

- -

SF 5:
Up to 8.0%
(+171.6%)

SF 10:
Up to 7.5
(+166.7%)

Barrag’an-Ramos
et al. [97]

FRCA
0, 20, 60, 100

W/C: 0.45
and 0.50 20 FRCA

W/C: 0.45:
Up to 26
(−16.1%)
W/C: 0.5:
Up to 23
(−11.5%)

- -

W/C: 0.45:
Up to 8500
(+34.9%)
W/C: 0.5:

Up to 6900
(+16.9%)

-

FA: 20% 20FA

W/C: 0.45
Up to 22
(−29.0%)
W/C: 0.5
Up to 17
(−34.6%)

- -

W/C: 0.45
Up to 5900

(−6.3%)
W/C: 0.5

Up to 7000
(+18.6%)

-

Ju et al. [98] FRCA
0, 50, 100

Grade: 20
MPa FRCA 50% Up to 27.7

(−12.0%)
Up to 3.61
(−6.3%) - - -

FA: 15, 30
GGBS: 20,40

SF: 2.5,5

FA—30
GGBS—40

SF—5

FA 15:
Up to 32.8

(+4.5%)
FA 30:

Up to 21.7
(−31.0%)
GGBS 20:
Up to 32.8

(+4.3%)
GGBS 40:
Up to 27.5
(−12.5%)

SF 2.5:
Up to 33.6

(+6.9%)
SF 5:

Up to 21.6
(−31.3%)

FA 15:
Up to 3.9
(+3.0%)
FA 30:

Up to 3.6
(−6.5%)

GGBS 20:
Up to 3.70

(+4.1%)
GGBS 40:
Up to 3.58
(−7.2%)
SF 2.5:

Up to 4.03
(+2.7%)

SF 5:
Up to 2.64
(−31.6%)

- - -

Kirthika et al. [37] FMRA
0, 30, 50, 75, 100 W/C: 0.50 30 Up to 30.1

(−16.9%)
Up to 2.9
(−6.45%)

Up to 4.6
(+2.22%) - -

Joseph et al. [4]
CMRA

0, 30, 60,
100

W/C: 0.42 30 Up to 34.92
(−18.7%)

Up to 2.21
(−19%)

Up to 2.52
(−47.4%) - -

Using RCA with a silica fume paste (ten parts water and one part solid) improved the
interface between the aggregate and the surface of the RCA, resulting in denser hydrates
that reduced the penetration of carbon dioxide. On the other hand, the fly ash slurry
produced less effective results than the silica fume slurry. Mixing a 10% solution of
silica fume with recycled concrete aggregate made the SF particles penetrate the loose
mortar layer of the RA. When comparing ultrasonic cleaning of RCA to SF impregnation,
the improvements in properties are smaller in ultrasonic cleaning [99]. The ultrafine
cementitious material’s inclusion decreased the number of Ca(OH)2 crystals, which was
detrimental to the concrete’s properties. The addition of 10% superfine phosphorous slag
(PHS) and 10% GGBS produced an improvement in the hardened properties of the concrete.
Because of the increase in the hydration retardation produced by PHS, specimens with 20%
phosphorous slag had a lower modulus of elasticity than the other specimens [58]. The
utilization of pulverized coal bottom ash with a Blaine fineness of 858.6 m2/kg, which is two
times finer than cement, can significantly enhance the strength properties of concrete [100].



Sustainability 2023, 15, 4932 16 of 27

The addition of a 60% GGBS, 7% lime, and 100% RCA combination produced a dense
microstructure compared with concrete without lime. The lime content in the GGBS was
29% less than that in OPC (64.40%). However, adding lime can increase the alkalinity
of the concrete, resulting in the breakdown of GGBS particles and producing additional
calcium hydrate (CSH) gel [90]. The addition of 1%, 3%, and 5% nano SiO2 decreased
the permeability, thereby reducing the penetration of chloride ions. The compressive
strength of the 3% nano-silica substitution in 40% RCA was comparable to that of regular
concrete at later ages. Calcium hydroxide combines with nano SiO2 during the hydration of
cement and serves as both an activator for the hydration reaction and a filler to increase the
density [101]. Therefore, the modification method impacts upon the compressive strength
of recycled concrete aggregates. In addition, incorporating supplementary cementitious
materials helps to improve the hardened properties of recycled aggregates.

Figure 7 shows the variation in the water absorption and chloride ion permeability
with the variation in the recycled aggregate replacement level in the concrete. Regarding
mechanical and durability properties, similar results were obtained (up to 50% replacement
of recycled aggregate with 25% pozzolanic materials). The addition of pozzolanic materials
at the 45% replacement level in entirely replaced recycled aggregate concrete improved the
mechanical and durability properties compared with conventional concrete [102]. The RFA
concrete exhibited higher strength and less drying shrinkage than regular concrete after
the inclusion of additional cementitious ingredients. The pozzolanic materials, such as fly
ash and GGBS, effectively reduced the adverse effects of the recycled fine aggregates [103].
Therefore, supplementary cementitious materials could improve the strength and durability
properties, reducing the difficulties associated with extensive pretreatment techniques for
recycled aggregates.
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2.6. Frost Resistance

The durability of RA concrete is typically lower than that of conventional concrete
due to the old mortar on the RA concrete’s surface. Several researchers have improved the



Sustainability 2023, 15, 4932 17 of 27

adverse effects related to the durability of RA using various techniques. In general, the
durability characteristics of recycled aggregate concrete, such as chloride ion permeability,
water absorption, sorptivity, acid resistance, and frost resistance, decline as the RA material
content increases. The durability aspects, such as the chloride ion permeability and the
freeze and thaw resistance, can affect the mechanical behavior and development of the mi-
crostructure of RA concrete [104]. Adding GGBS and fly ash improved the frost resistance of
recycled aggregate concrete. Recycled aggregate concrete without fly ash and GGBS began
to lose mass after 25 freeze and thaw cycles. However, the independent or simultaneous
replacement of fly ash and GGBS in 50% replaced recycled aggregate concrete delayed the
mass loss rate only after 150 freeze and thaw cycles [86]. Similar research on durability
aspects showed that, at up to the 40% replacement level, the durability factor value (98.4%)
was slightly lower than that of conventional concrete. The change in length of 50% replaced
recycled aggregate concrete was 10.9% larger than that of 30% recycled aggregate concrete
after 300 freeze and thaw cycles. As a result, it was found that the durability characteristics
were comparable with those of conventional concrete up to the 50% replacement level [105].
Additionally, the freeze and thaw resistance of recycled aggregate was tested based on
the water absorption test. The water absorption of recycled aggregate concrete after 100
freeze and thaw cycles increased by 58.1% for 100% replaced recycled aggregate concrete
due to the old mortar, which produced a weaker interfacial transition zone, leading to the
transport of water into the concrete. Adding 40% ferronickel slag as a fine aggregate in 50%
replaced recycled aggregate concrete decreased the water absorption value by 19.76%. This
reduction was due to the reaction between the non-crystalline phases in the ferronickel
slag, leading to the formation of a larger amount of secondary gel, which improved the
weak interfacial zone in the recycled aggregate concrete [87]. The mass loss rate of the RA
increased as the recycled aggregate content increased as shown in Figure 8.
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The addition of pozzolanic materials could offset the increase in the mass loss rate.
Adding 30% fly ash to recycled aggregate concrete improved the frost resistance by 30%.
In addition, the frost resistance of 50% replaced recycled aggregate concrete with the
simultaneous replacement of supplementary cementitious materials, such as 15% GGBS
and 15% fly ash, exhibited better performance than conventional concrete [86]. Although
the recycled aggregate content affects the freeze and thaw resistance, the addition of
supplementary cementitious materials can enhance the freeze and thaw resistance to
some extent.
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3. Scientometric Review of Recycled Concrete Aggregate Research

The bibliometric data were obtained from the Clarivate Analytics Web of Science
database. The search was systematic and extensive in order to ensure that the conclusions
of the review are sound. The retrieval of the publications was done on 10 September 2021.
Fundamentally, the article search was performed using the keyword parameters ((recycled
concrete aggregate) and (strength)). The period was initially unrestricted. The number of
articles returned due to this query was 3893 between 1965 and 2021. After applying filters
for the period from 2012 to 2021, setting the language to English, and eliminating the review
papers, proceeding papers, and early access papers, the total number of documents screened
was 3209. Out of these 3209 documents, unrelated topics were eliminated manually,
and only experimental studies on recycled aggregate concrete were selected. Finally,
1415 documents were selected for top-cited paper and keyword co-occurrence analysis.
Clarivate Analytics Web of Science was used to retrieve the complete database. Furthermore,
the output was visualized using the VOSviewer 1.6.17 software.

3.1. Top-Cited Articles

The relationship between a paper and its citations provides information about the
document’s quality. A high citation metric is directly proportional to high document
quality, so researchers frequently refer to these documents. The top-cited document [1]
describes the mechanical and permeability properties of recycled concrete aggregate. The
second-most cited document defines a method for the addition of class F fly ash to mitigate
the inferior properties of recycled aggregate concrete [108]. The third-most cited document
reports valuable information on the durability effects and a method for the design of
RAC [109]. Among the top 48 documents [110], is the most cited (nine times) by the top-
listed documents. There are several documents [1,108,110–124] that were cited more than
five times by the top-listed documents. Therefore, the listed documents are essential in the
field of recycled concrete aggregate.

3.2. Keyword Co-Occurrence and Evolution Analysis

The soul of an article is its keywords, which can accurately and succinctly describe the
research article. Accordingly, high-frequency keywords frequently identify the hot subjects
in a specific research domain. VOSviewer’s keyword co-occurrence network can show the
degree to which a keyword appears in a set of papers. The co-occurrence and keyword
analysis is done using all keywords as a unit of analysis. Web of Science gives keywords
from the abstract and title using a function called “keyword plus” and the keywords given
by authors. The standardization of keywords was necessary to eliminate the recurrence
of similar terms and meanings. After eliminating common terms, the map visualization
showed 13 clusters. Keywords with a high degree of connection with one another are
more likely to be grouped together. The keyword grouping was necessary in order to
represent the same topic within one cluster. The usage of the keyword and the increase in
the font define the total link strength (TLS) [125]. From the 251 standardized keywords, key-
words with more co-occurrences with generic topics, such as recycled concrete aggregates,
properties, strengthening, performance, and evaluation, were manually removed.

In Figure 9, the portion in the middle of the visualization represents a strong relation-
ship between those keywords. The higher density represents the well-developed research
on the theme. The keywords in the outer area, such as “recycled aggregate concrete-filled
steel tube”, “fiber-reinforced polymer tubes”, “tubular skin columns”, “glazed hollow
beads”, “compacting concrete”, “functionally graded concrete”, “nano-sheets”, “graphene
oxide”, “endurance limit”, “strain rate”, “sorptivity test”, “frost resistance”, “air con-
tent”, “bottom ash”, “sulphate attack”, “bacterial”, “oil fuel ash”, “bagasse ash”, “kiln
dust”, “dune sand”, “manufactured sand”, “calcium carbide residue”, “wastewater”,
“time-dependent deflection”, “fatigue strength”, “seismic performance”, “mixed recycled
aggregates”, and “precast industry waste”, and many of these research fields tended to
be immature. Still, more studies must be incorporated in order to develop cost-effective
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and efficient recycled concrete aggregates to conserve natural materials and minimize the
accumulation of construction and demolition waste.
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4. Current Trends and Future of Recycled Aggregates

The code IS 383:2016 mentions that the extension of the utilization of RCA for plain
concrete should be up to 25%. Similarly, the code permits RCA usage for reinforced
concrete up to 20%, and the grade of the concrete can be up to M25. This specification
was updated in IS 383:2016 based on extensive research in the field of RCA. Still, there is
scope to increase the replacement percentage of RCA and the usage of it in higher-grade
concrete for the effective utilization of CDW, thus improving the circular economy in the
construction field. Since IS code 383:2016 does not permit RA usage in both plain and
reinforced concrete, further research on mixed recycled aggregates is needed in order to
increase the use of all CDW materials effectively and efficiently. A detailed study on the
durability factor of recycled aggregate concrete is necessary due to the heterogeneous
behavior of recycled aggregates. Additionally, the development of standards is necessary
to quantify the inherent features of RA. The lack of appropriate regulations, codes, and
specifications limits the use of RA. So, research can be undertaken in the future to formulate
standards that would enhance RA use, reducing the major environmental problems.

5. Discussion

People have become more concerned about environmental issues and pay more
attention to the vast amounts of concrete trash that are created. Effective recycling processes
and the use of concrete debris will enable the development of a sustainable circular economy.
X-ray fluorescence test results show the presence of SiO2, CaO, and Al2O3 in coarse and
fine recycled aggregates. The natural aggregate seems to have a significant amount of SiO2
and less CaO and Al2O3, whereas the recycled aggregate has a similar amount of SiO2
and slightly higher CaO and Al2O3 content. The results of studies on recycled aggregates
suggest that their compositions are comparable and connected to the source concrete [38].
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However, recycled aggregate made from construction and demolition waste must be
cleaned and treated properly before it can be used in concrete mixes. Furthermore, recycled
aggregate typically contains old mortar; as a result, techniques for the improvement of
inferior properties and the reduction of impurities are necessary.

Recycled aggregate used as a partial aggregate replacement typically affects the work-
ability of fresh concrete because of its higher water absorption [126]. However, the soaking
of the recycled aggregate, the use of the water compensation method during mixing [127],
and the addition of a superplasticizer could minimize the negative effect on the workability.
Nevertheless, based on the reported studies, the use of an aggregate made from construc-
tion and demolition waste generally decreased the strength and durability attributes. The
weaker interface that increased the water absorption and the old mortar that decreased the
bonding strength were the leading causes of the decline in strength. As a result, adopting
a high recycled aggregate replacement level is generally not advised; according to the
literature, it should be kept below 30%. Table 7 shows the strengths and weaknesses of
various treatment techniques for recycled aggregates.

Table 7. Strengths and weaknesses of pretreatment techniques.

S.
No Pretreatment Technique Advantages Disadvantages

1 Nano-silica coating of RA [79]
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 The enhancement in the quality of 
the carbonated recycled aggregate 
depends on many factors, such as 
the vacuum pressure, CO2 concen-
tration, and the duration of the 
treatment. 

5 
Heat and mechanical rub-

bing [131] 

 The friction between the cement 
and the aggregate is improved. 

 Effective in the detachment of ad-
hered mortar in the recycled aggre-
gate. 

 Increased temperature leads to the 
disintegration of the recycled ag-
gregate. 

 Problems related to uneven heat-
ing lead to worse performance. 

Accumulation of nanoparticles
leads to a non-uniform
distribution.
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and the use of concrete debris will enable the development of a sustainable circular econ-
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icate and silane impregnation re-
sulted in an increase in hydration 
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 Ternary blended impregnation is 
less effective due to the formation 
of a hydrophobic layer by the poly-
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nation (fly ash, GGBS, silica 

fume, and metakaolin) 
[129] 
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 Improved the bond between the 
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 Addition of pozzolanic materials 
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4 
Carbonation treatment 

[130] 

 The deposition of calcite in the 
pores present in the recycled aggre-
gate leads to a denser surface. 

 The enhancement in the quality of 
the carbonated recycled aggregate 
depends on many factors, such as 
the vacuum pressure, CO2 concen-
tration, and the duration of the 
treatment. 

5 
Heat and mechanical rub-

bing [131] 

 The friction between the cement 
and the aggregate is improved. 

 Effective in the detachment of ad-
hered mortar in the recycled aggre-
gate. 

 Increased temperature leads to the 
disintegration of the recycled ag-
gregate. 

 Problems related to uneven heat-
ing lead to worse performance. 

High cost of nanomaterials.

2
Chemical and impregnation treatment

(sodium silicate, silane
slurry, and polyvinyl alcohol) [128]

Sustainability 2023, 15, x FOR PEER REVIEW 20 of 28 
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Pozzolanic slurry impreg-
nation (fly ash, GGBS, silica 
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 Improved the bond between the 
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4 
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[130] 

 The deposition of calcite in the 
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the carbonated recycled aggregate 
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the vacuum pressure, CO2 concen-
tration, and the duration of the 
treatment. 

5 
Heat and mechanical rub-

bing [131] 

 The friction between the cement 
and the aggregate is improved. 

 Effective in the detachment of ad-
hered mortar in the recycled aggre-
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 Increased temperature leads to the 
disintegration of the recycled ag-
gregate. 

 Problems related to uneven heat-
ing lead to worse performance. 

More compact and stable ITZ.
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treatment. 

5 
Heat and mechanical rub-

bing [131] 

 The friction between the cement 
and the aggregate is improved. 

 Effective in the detachment of ad-
hered mortar in the recycled aggre-
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 Increased temperature leads to the 
disintegration of the recycled ag-
gregate. 

 Problems related to uneven heat-
ing lead to worse performance. 

Recycled aggregate with sodium
silicate and silane impregnation
resulted in an increase in
hydration products.
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and the use of concrete debris will enable the development of a sustainable circular econ-
omy. X-ray fluorescence test results show the presence of SiO2, CaO, and Al2O3 in coarse 
and fine recycled aggregates. The natural aggregate seems to have a significant amount 
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treatment. 

5 
Heat and mechanical rub-

bing [131] 

 The friction between the cement 
and the aggregate is improved. 

 Effective in the detachment of ad-
hered mortar in the recycled aggre-
gate. 

 Increased temperature leads to the 
disintegration of the recycled ag-
gregate. 

 Problems related to uneven heat-
ing lead to worse performance. 

Ternary blended impregnation is
less effective due to the formation
of a hydrophobic layer by the
polyvinyl alcohol solution, which
acts as a barrier for the compact
microstructure.

3
Pozzolanic slurry impregnation (fly ash,

GGBS, silica fume,
and metakaolin) [129]
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and the use of concrete debris will enable the development of a sustainable circular econ-
omy. X-ray fluorescence test results show the presence of SiO2, CaO, and Al2O3 in coarse 
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Economical treatment method.
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Improved the bond between the
new mortar and the recycled
aggregate due to the increased
pozzolanic reactivity.
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and the use of concrete debris will enable the development of a sustainable circular econ-
omy. X-ray fluorescence test results show the presence of SiO2, CaO, and Al2O3 in coarse 
and fine recycled aggregates. The natural aggregate seems to have a significant amount 
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ing lead to worse performance. 

Increased amount of silica fume
produces an insufficient
interfacial transition zone.
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and the use of concrete debris will enable the development of a sustainable circular econ-
omy. X-ray fluorescence test results show the presence of SiO2, CaO, and Al2O3 in coarse 
and fine recycled aggregates. The natural aggregate seems to have a significant amount 
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 High cost of nanomaterials. 
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5 
Heat and mechanical rub-

bing [131] 

 The friction between the cement 
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 Effective in the detachment of ad-
hered mortar in the recycled aggre-
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gregate. 

 Problems related to uneven heat-
ing lead to worse performance. 

Addition of pozzolanic materials
reduces the workability.

4 Carbonation treatment [130]
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and the use of concrete debris will enable the development of a sustainable circular econ-
omy. X-ray fluorescence test results show the presence of SiO2, CaO, and Al2O3 in coarse 
and fine recycled aggregates. The natural aggregate seems to have a significant amount 
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[38]. However, recycled aggregate made from construction and demolition waste must be 
cleaned and treated properly before it can be used in concrete mixes. Furthermore, recy-
cled aggregate typically contains old mortar; as a result, techniques for the improvement 
of inferior properties and the reduction of impurities are necessary. 

Recycled aggregate used as a partial aggregate replacement typically affects the 
workability of fresh concrete because of its higher water absorption [126]. However, the 
soaking of the recycled aggregate, the use of the water compensation method during mix-
ing [127], and the addition of a superplasticizer could minimize the negative effect on the 
workability. Nevertheless, based on the reported studies, the use of an aggregate made 
from construction and demolition waste generally decreased the strength and durability 
attributes. The weaker interface that increased the water absorption and the old mortar 
that decreased the bonding strength were the leading causes of the decline in strength. As 
a result, adopting a high recycled aggregate replacement level is generally not advised; 
according to the literature, it should be kept below 30%. Table 7 shows the strengths and 
weaknesses of various treatment techniques for recycled aggregates. 

Table 7. Strengths and weaknesses of pretreatment techniques. 

S. 
No 

Pretreatment Technique Advantages Disadvantages 

1 Nano-silica coating of RA 
[79] 

 Absorption of nano-scale materials 
on the surface leads to a denser in-
terfacial transition zone. 

 Accumulation of nanoparticles 
leads to a non-uniform distribu-
tion. 

 High cost of nanomaterials. 

2 

Chemical and impregna-
tion treatment (sodium sili-

cate, silane 
slurry, and polyvinyl alco-

hol) [128] 

 More compact and stable ITZ. 
 Recycled aggregate with sodium sil-

icate and silane impregnation re-
sulted in an increase in hydration 
products. 

 Ternary blended impregnation is 
less effective due to the formation 
of a hydrophobic layer by the poly-
vinyl alcohol solution, which acts 
as a barrier for the compact micro-
structure. 

3 

Pozzolanic slurry impreg-
nation (fly ash, GGBS, silica 

fume, and metakaolin) 
[129] 

 Economical treatment method. 
 Improved the bond between the 

new mortar and the recycled aggre-
gate due to the increased pozzolanic 
reactivity. 

 Increased amount of silica fume 
produces an insufficient interfacial 
transition zone. 

 Addition of pozzolanic materials 
reduces the workability.   

4 
Carbonation treatment 

[130] 

 The deposition of calcite in the 
pores present in the recycled aggre-
gate leads to a denser surface. 

 The enhancement in the quality of 
the carbonated recycled aggregate 
depends on many factors, such as 
the vacuum pressure, CO2 concen-
tration, and the duration of the 
treatment. 

5 
Heat and mechanical rub-

bing [131] 

 The friction between the cement 
and the aggregate is improved. 

 Effective in the detachment of ad-
hered mortar in the recycled aggre-
gate. 

 Increased temperature leads to the 
disintegration of the recycled ag-
gregate. 

 Problems related to uneven heat-
ing lead to worse performance. 

The deposition of calcite in the
pores present in the recycled
aggregate leads to a denser
surface.
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treatment. 
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bing [131] 

 The friction between the cement 
and the aggregate is improved. 

 Effective in the detachment of ad-
hered mortar in the recycled aggre-
gate. 

 Increased temperature leads to the 
disintegration of the recycled ag-
gregate. 

 Problems related to uneven heat-
ing lead to worse performance. 

The enhancement in the quality of
the carbonated recycled aggregate
depends on many factors, such as
the vacuum pressure, CO2
concentration, and the duration
of the treatment.

5 Heat and mechanical rubbing [131]
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and the aggregate is improved.
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Effective in the detachment of
adhered mortar in the recycled
aggregate.
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Increased temperature leads to
the disintegration of the recycled
aggregate.
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Problems related to uneven
heating lead to worse
performance.

6 Acid treatment followed by
mechanical grinding [66]
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Soaking in mild acid improved
the bonding without changing the
chemical disintegration.
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and the use of concrete debris will enable the development of a sustainable circular econ-
omy. X-ray fluorescence test results show the presence of SiO2, CaO, and Al2O3 in coarse 
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 Problems related to uneven heat-
ing lead to worse performance. 

Mechanical treatment efficiently
removed the loose particles on the
surface of the recycled aggregate.
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Table 7. Cont.

S.
No Pretreatment Technique Advantages Disadvantages

7 Bio deposition [132]
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Due to the existence of porous mortar, prior research has found that using recycled ag-
gregate in concrete negatively affects its microstructural behavior and durability attributes.
Therefore, adding mineral admixtures, such as fly ash, GGBS, metakaolin, and silica fume,
is necessary in order to improve the negative effect of recycled aggregate concrete, which is
due to the filler effect and the improved pozzolanic reactivity of the cement that increases
its strength. However, techniques such as the inclusion of additional cementitious materials
in the right amounts not only act as a filler but also aid in the hydration reaction, increasing
the number of hydration products, decreasing the amount of pore space in the concrete, and
resulting in recycled aggregate concrete with a more compact structure and higher strength
and durability [133]. Still, the properties of RA vary so widely among the sources that it
needs more testing before it can be utilized in the broad sense of concrete applications.

6. Conclusions

This paper discusses the properties of recycled aggregate, fresh concrete, and hardened
concrete and the capacity of various treatment approaches to improve the inferior properties
of recycled aggregate. The following issues were identified after a careful examination of
the recycled aggregate concrete research:

• The water absorption rate of recycled concrete aggregate can be reduced using various
methods, such as carbonation treatment, the addition of supplementary cementitious
materials with a two-stage mixing approach, hydrochloric acid, H2SO4 acid, and acetic
acid immersion treatments, impregnation with calcium metasilicate, the addition
of pozzolanic slurry (nano-SiO2, silica fume, and fly ash slurry), the addition of
a superfine powder (phosphorous slag, ground granulated blast furnace slag, and
fly ash) with a superplasticizer, heating–scrubbing, and the immersion of RCA in a
crystallization agent.

• We discuss the strengths and weaknesses of each improvement method, includ-
ing the mixing approach, acid treatment, carbonation treatment, and the addition
of pozzolanic material. The addition of pozzolanic materials and pre-soaking us-
ing nanomaterials effectively and economically improved the detrimental effects of
recycled aggregates.

• The optimum level of replacement of different pozzolanic materials with recycled
concrete aggregate was found to be 7% for silica fume, a liquid-to-solid ratio of 10:1
for silica fume slurry, a combination of 10% superfine phosphorous slag with 10%
GGBS, a combination of 60% GGBS and 7% lime, and 3% replacement of nano-silica.
In addition, a combination of fly ash, slag, and silica fume was found to mitigate the
adverse effect of RCA and improve the mechanical properties.

• The top-cited articles and keyword co-occurrence visualization provided us with the
most- and least-studied areas, which may help us to improve the research field further.

As recycled aggregate is similar to natural aggregate, the material can be utilized as a
fine and coarse aggregate if the proper enhancement techniques are adopted. Moreover,
based on the literature, adequate workability and strength in a concrete made from recycled
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aggregate could be attained at up to the 30% replacement level. Furthermore, durability
properties could be enhanced with the addition of various supplementary materials and
treatment methods even in high-strength concrete, as the properties keep improving over
the curing period. By doing so, a significant amount of building and demolition waste
could be used, which could help to reduce the use of virgin materials in the construction
sector in order to protect the environment.
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111. Dilbas, H.; Şimşek, M.; Çakır, Ö. An investigation on mechanical and physical properties of recycled aggregate concrete (RAC)

with and without silica fume. Constr. Build. Mater. 2014, 61, 50–59. [CrossRef]
112. Pereira, P.; Evangelista, L.; de Brito, J. The effect of superplasticisers on the workability and compressive strength of concrete

made with fine recycled concrete aggregates. Constr. Build. Mater. 2012, 28, 722–729. [CrossRef]
113. Çakır, Ö. Experimental analysis of properties of recycled coarse aggregate (RCA) concrete with mineral additives. Constr. Build.

Mater. 2014, 68, 17–25. [CrossRef]
114. Xuan, D.; Zhan, B.; Poon, C.S. Durability of recycled aggregate concrete prepared with carbonated recycled concrete aggregates.

Cem. Concr. Compos. 2017, 84, 214–221. [CrossRef]
115. Barbudo, A.; de Brito, J.; Evangelista, L.; Bravo, M.; Agrela, F. Influence of water-reducing admixtures on the mechanical

performance of recycled concrete. J. Clean. Prod. 2013, 59, 93–98. [CrossRef]
116. Soares, D.; de Brito, J.; Ferreira, J.; Pacheco, J. Use of coarse recycled aggregates from precast concrete rejects: Mechanical and

durability performance. Constr. Build. Mater. 2014, 71, 263–272. [CrossRef]
117. Thomas, J.; Thaickavil, N.N.; Wilson, P. Strength and durability of concrete containing recycled concrete aggregates. J. Build. Eng.

2018, 19, 349–365. [CrossRef]
118. Limbachiya, M.; Meddah, M.S.; Ouchagour, Y. Use of recycled concrete aggregate in fly-ash concrete. Constr. Build. Mater. 2012,

27, 439–449. [CrossRef]
119. Kou, S.-C.; Poon, C.S. Long-term mechanical and durability properties of recycled aggregate concrete prepared with the

incorporation of fly ash. Cem. Concr. Compos. 2013, 37, 12–19. [CrossRef]
120. Bravo, M.; de Brito, J.; Pontes, J.; Evangelista, L. Mechanical performance of concrete made with aggregates from construction

and demolition waste recycling plants. J. Clean. Prod. 2015, 99, 59–74. [CrossRef]
121. Pereira, P.; Evangelista, L.; de Brito, J. The effect of superplasticizers on the mechanical performance of concrete made with fine

recycled concrete aggregates. Cem. Concr. Compos. 2012, 34, 1044–1052. [CrossRef]
122. Andreu, G.; Miren, E. Experimental analysis of properties of high performance recycled aggregate concrete. Constr. Build. Mater.

2014, 52, 227–235. [CrossRef]
123. Pedro, D.; de Brito, J.; Evangelista, L. Influence of the use of recycled concrete aggregates from different sources on structural

concrete. Constr. Build. Mater. 2014, 71, 141–151. [CrossRef]
124. Medina, C.; Zhu, W.; Howind, T.; de Rojas, M.I.S.; Frías, M. Influence of mixed recycled aggregate on the physical–mechanical

properties of recycled concrete. J. Clean. Prod. 2014, 68, 216–225. [CrossRef]
125. Chen, X.; Chen, J.; Wu, D.; Xie, Y.; Li, J. Mapping the Research Trends by Co-word Analysis Based on Keywords from Funded

Project. Procedia Comput. Sci. 2016, 91, 547–555. [CrossRef]

http://doi.org/10.1061/(ASCE)MT.1943-5533.0000645
http://doi.org/10.1016/j.conbuildmat.2022.128759
http://doi.org/10.3390/ma13102264
http://doi.org/10.1061/(ASCE)0899-1561(2004)16:6(597)
http://doi.org/10.1016/j.matpr.2020.01.487
http://doi.org/10.1016/j.jclepro.2022.133322
http://doi.org/10.3390/ma16010305
http://doi.org/10.1016/j.cemconcomp.2022.104745
http://doi.org/10.1061/(ASCE)MT.1943-5533.0001237
http://doi.org/10.1016/j.cscm.2022.e01475
http://doi.org/10.1080/19397038.2021.1886374
http://doi.org/10.1016/j.conbuildmat.2012.02.032
http://doi.org/10.1016/j.conbuildmat.2011.06.059
http://doi.org/10.1016/j.conbuildmat.2013.03.011
http://doi.org/10.1016/j.conbuildmat.2014.02.057
http://doi.org/10.1016/j.conbuildmat.2011.10.050
http://doi.org/10.1016/j.conbuildmat.2014.06.032
http://doi.org/10.1016/j.cemconcomp.2017.09.015
http://doi.org/10.1016/j.jclepro.2013.06.022
http://doi.org/10.1016/j.conbuildmat.2014.08.034
http://doi.org/10.1016/j.jobe.2018.05.007
http://doi.org/10.1016/j.conbuildmat.2011.07.023
http://doi.org/10.1016/j.cemconcomp.2012.12.011
http://doi.org/10.1016/j.jclepro.2015.03.012
http://doi.org/10.1016/j.cemconcomp.2012.06.009
http://doi.org/10.1016/j.conbuildmat.2013.11.054
http://doi.org/10.1016/j.conbuildmat.2014.08.030
http://doi.org/10.1016/j.jclepro.2014.01.002
http://doi.org/10.1016/j.procs.2016.07.140


Sustainability 2023, 15, 4932 27 of 27

126. Deepa, P.; Anup, J. Experimental Study on the Effect of Recycled Aggregate and GGBS on Flexural Behaviour of Reinforced
Concrete Beam. Appl. Mech. Mater. 2016, 857, 101–106. [CrossRef]

127. Ferreira, L.; de Brito, J.; Barra, M. Influence of the pre-saturation of recycled coarse concrete aggregates on concrete properties.
Mag. Concr. Res. 2011, 63, 617–627. [CrossRef]

128. Zhong, C.; Tian, P.; Long, Y.; Zhou, J.; Peng, K.; Yuan, C. Effect of Composite Impregnation on Properties of Recycled Coarse
Aggregate and Recycled Aggregate Concrete. Buildings 2022, 12, 1035. [CrossRef]

129. Wang, J.; Che, Z.; Zhang, K.; Fan, Y.; Niu, D.; Guan, X. Performance of recycled aggregate concrete with supplementary
cementitious materials (fly ash, GBFS, silica fume, and metakaolin): Mechanical properties, pore structure, and water absorption.
Constr. Build. Mater. 2023, 368, 130455. [CrossRef]

130. Singh, M.; Roy, A.D.; Waseem, S.; Singh, H. Feasibility and performance analysis of carbonated recycled aggregate concrete. Int. J.
Sustain. Eng. 2020, 14, 761–775. [CrossRef]

131. Pawluczuk, E.; Kalinowska-Wichrowska, K.; Bołtryk, M.; Jiménez, J.R.; Fernández, J.M. The Influence of Heat and Mechanical
Treatment of Concrete Rubble on the Properties of Recycled Aggregate Concrete. Materials 2019, 12, 367. [CrossRef] [PubMed]

132. Wu, C.-R.; Zhu, Y.-G.; Zhang, X.-T.; Kou, S.-C. Improving the properties of recycled concrete aggregate with bio-deposition
approach. Cem. Concr. Compos. 2018, 94, 248–254. [CrossRef]

133. Vo, D.-H.; Hwang, C.-L.; Thi, K.-D.T.; Yehualaw, M.D.; Chen, W.-C. Effect of Fly Ash and Reactive MgO on the Engineering
Properties and Durability of High-Performance Concrete Produced with Alkali-Activated Slag and Recycled Aggregate. J. Mater.
Civ. Eng. 2020, 32, 04020332. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.4028/www.scientific.net/AMM.857.101
http://doi.org/10.1680/macr.2011.63.8.617
http://doi.org/10.3390/buildings12071035
http://doi.org/10.1016/j.conbuildmat.2023.130455
http://doi.org/10.1080/19397038.2020.1856967
http://doi.org/10.3390/ma12030367
http://www.ncbi.nlm.nih.gov/pubmed/30682832
http://doi.org/10.1016/j.cemconcomp.2018.09.012
http://doi.org/10.1061/(ASCE)MT.1943-5533.0003420

	Introduction 
	Literature Review on Recycled Aggregate 
	Composition of Recycled Aggregate 
	Treatment of Recycled Aggregate 
	Fresh Concrete Properties 
	Properties of Hardened Concrete 
	Supplementary Cementitious Materials 
	Frost Resistance 

	Scientometric Review of Recycled Concrete Aggregate Research 
	Top-Cited Articles 
	Keyword Co-Occurrence and Evolution Analysis 

	Current Trends and Future of Recycled Aggregates 
	Discussion 
	Conclusions 
	References

