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Abstract: An improved numerical formulation for a self-centering frictional damper is presented.
This was experimentally validated through quasi-static tests carried out on a steel-made prototype of
the damper. Its design is ad hoc for implementation in the seismic protection of industrial storage
racks. The conceptual model of the device was adjusted to the prototype built. The formulation of
the analytical model, a parametric analysis of it, and the validation with experimental results are
presented. The improvement of the model presented here explicitly considers elements included in the
prototype, such as a system of load transmission rings and the friction between all of the components
that slide or rotate relatively. In the experimental validation, the parameters of the improved
model were determined. The numerical predictions for the improved model were contrasted with
those obtained with the original one and with the experimental results. This demonstrates that the
improvement leads to a better adjustment of the numerical predictions concerning the experimental
measurements, which is useful for nonlinear analysis. The device withstood forces of considerable
magnitude in addition to dissipating enough energy per load–unload cycle to be effective in the
seismic protection of industrial storage racks.

Keywords: frictional damper; tension loads; self-centering capacity; nonlinear model; industrial
storage rack application

1. Introduction

In recent years, there has been a growing emphasis in engineering on creating resilient
systems that can rapidly recover from disruptive events [1]. Within the field of structural
engineering, one such event is an earthquake, which involves a sudden release of energy
that impacts buildings. Earthquakes result in the loss of human lives and disrupt opera-
tional and economic activities within society [2]. Consequently, innovative solutions have
been developed to mitigate the damages caused by these natural events [3]. One such
solution is the use of energy dissipators for seismic protection, which effectively reduces
the associated damages.

Energy dissipation devices are mechanisms incorporated into structures to enhance
damping, thereby reducing the amplitude of vibrations caused by dynamic loads such as
wind and earthquakes [4,5]. These devices, along with seismic isolators, are widely used
in engineering due to their cost-effectiveness and proven efficacy as passive systems [6].
They are specifically designed to absorb vibrational energy and release it in a controlled
and localized manner [4]. Energy dissipation devices can be classified into metallic yield
dampers, friction dampers, viscoelastic dampers, viscous fluid dampers, tuned mass
dampers, and tuned liquid dampers [4].
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Among the types of dissipaters to mitigate structural vibrations, those based on friction
stand out for being some of the most economical, and for not depending on frequency [7,8].
The coefficient of friction is constant because it is characteristic of the elements in contact
[9,10] and normal force is a design property of the device [10]. The response of a frictional
damper is dependent on the coefficient of friction and the normal force between the sliding
surfaces [10,11]. Therefore, these dampers are considered activated by deformation, since
their response is independent of the speed of deformation and the frequency of excitation [8].
These dampers harness the relative sliding and friction between two or more surfaces,
converting energy into heat and preventing localized wear on the contact surfaces. They are
distinguished by their ability to release a significant amount of energy per load–discharge
cycle while remaining insensitive to load amplitude and vibration frequency [11]. However,
it is worth noting that a limitation of friction-based dampers is the potential variation in
the coefficient of friction between contact surfaces over multiple load and discharge cycles
due to the increase in temperature [11].

Traditional frictional dissipators lack inherent self-centering capacity, resulting in
residual deformations in the structures that utilize them [12]. To address this limitation,
external self-centering mechanisms or structural intervention are required to restore the
system to its original position and, in severe cases, the dissipators may need replacement
after a major earthquake [13]. Recognizing this challenge, researchers have shifted their
focus towards developing dampers with built-in self-centering capabilities, offering a
comparative advantage over traditional frictional dissipators [14]. Examples include a
vertical-shear self-centering damper for enhancing seismic performance [15], self-centering
friction spring dampers for seismic resilience [16], shock absorbers with a self-centering
capacity [16], self-centering dampers and bar centering within columns [17], a self-centering
damper based on shape memory alloy wires [18], a seismic bracing system based on a
superelastic shape memory alloy ring [19], an asymmetrical friction damper to improve the
seismic behavior of tension-only braces [20], and a slack-free connection to improve the
seismic behavior of tension-only braces [21], among others. Some seismic isolation devices
also provide frictional dissipation and have self-centering capabilities, such as the wire
rope isolator [22,23].

Ensuring good structural performance is a crucial goal in earthquake-resistant engi-
neering. The primary objective is to design resilient systems that protect lives and maintain
operational continuity [24,25]. However, conventional design standards often fall short
in considering operational continuity, focusing solely on preventing structural collapse.
As a result, these standards tend to produce robust designs that concentrate damage in
structural elements [26–28]. By incorporating seismic protection systems, this approach can
be transformed to prioritize the prevention of collapse and severe damage while ensuring
continuous operation and better structural performance [4,29].

Maureira-Carsalade et al. [30] present an alternative self-centering frictional damper
device designed for the seismic protection of structures, which has been further improved
and developed here into a functional prototype. The device consists of two clamps, a
set of movable rings, and an internal spring system housed within a casing. Energy
dissipation occurs through friction between the contact surfaces, while the configuration
of its components provides its self-centering capability. The damper’s energy dissipation
capacity is directly proportional to the imposed displacement, allowing it to dissipate more
energy under greater seismic demand. Consequently, the device offers protection against
dynamic forces of varying magnitudes. In the event of a severe earthquake, the device
responds more robustly, resulting in greater energy dissipation compared to moderate
or mild earthquakes. Furthermore, the use of paired, prestressed devices arranged in
opposite directions enables a smoother response by eliminating impulsive forces arising
from activation discontinuity, thereby enhancing overall performance [25].

This technology, which has been further improved in this study, is designed for
implementation in braced frames. In those structures, the dynamic loads result in variations
in the workload experienced by the braces. Traditional structural systems often use bar-type



Buildings 2023, 13, 2302 3 of 32

braces to stiffen the frames, but these braces can be susceptible to buckling. Studies by
Fanaie [31] and Ghasemi [32] propose the use of cables as bracing systems to enhance the
structural framework. Cables are advantageous due to their high tensile load capacity
and negligible compression load capacity. Therefore, to ensure that the bracing functions
effectively against dynamic tensile and compressive loads, a system must be implemented
that consistently keeps the cables under tension [33]. Various alternatives have been
explored to post-tension the bracing cables and enhance their performance during dynamic
events. These include the implementation of rectangular [31] or circular [19] metallic
devices positioned at the intersection of the cross bracing. These elements, resulting from
cable tension in one direction, restrict the compression system in the opposite direction,
maintaining tension in the cable. However, these systems rely on the plastic deformation of
metal for energy dissipation and lack self-centering capacity. Other solutions proposed by
researchers like Gu [20] and Mousavi [21] involve mechanisms that only allow traction and
block under compression loads. While these solutions utilize friction between surfaces for
energy dissipation, they do not possess a self-centering capability. The technology studied
in this paper can be implemented in bracing diagonals of structural frames of any type,
dissipating part of the energy imposed by dynamic loads such as earthquakes and thus
improving structural performance.

Given the characteristics of the device under study, it represents an attractive solution
for the protection of structures and mechanical equipment. Nevertheless, considering
the current level of technological maturity proposed by Maureira-Carsalade et al. [30],
evaluation using the actual materials for manufacturing the device in real applications is
necessary. This research presents a prototype of the energy dissipation device proposed by
Maureira-Carsalade et al. [30], which is made of steel and designed to achieve a maximum
displacement of 60 mm and a force of 200 kg. Furthermore, the original simplified analytical
model has been enhanced to incorporate all of the components found in the built prototype.
This improvement aims to refine the numerical model’s ability to predict the actual behavior
of the device, aligning it more closely with the experimental results.

The structure to describe the methodology and results of this paper is presented in six
sections. In Section 2.1, the conceptual model of the device, its parts, and its functioning
are introduced. Section 2.2 delves into the refinement of the numerical model. Section 2.3
addresses the constraints and simplifications of the improved numerical model, summa-
rizing the variables involved and defining their allowable limits. Section 2.4 focuses on
a parametric analysis, where the influence and sensitivity of the variables are explored.
In Section 2.5, an experimental validation of the numerical model is presented. Finally,
in Section 2.6, the differences between the original and improved numerical models are
discussed.

2. Materials, Methods, and Results

This research focuses on proposing improvements to the simplified analytical model
for the mechanical characterization of the device presented by Maureira-Carsalade et al. [30].
The objective is to enhance the numerical prediction by explicitly incorporating physical
aspects observed in the prototype. The fidelity of the simplified analytical model and
the proposed improvements are evaluated and compared against experimental results
to showcase the advantages of these enhancements. The research is structured into five
stages: (1) a conceptual model of the device adjusted to the built prototype, (2) specific
improvements to the model according to the physical behavior observed, (3) restrictions
and kinematic simplifications of the model, (4) parametric analysis of both the original and
the improved mathematical model, and (5) experimental analysis and verification of the
improvements to the model.

By following this research framework, improvements to the simplified analytical
model are proposed, considering physical observations from the prototype. The enhanced
model’s accuracy is verified through experimental analysis, ultimately contributing to a
better understanding of the device’s behavior and its potential for practical application.
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2.1. Conceptual Model of the Device

An improved model of the frictional energy dissipator with self-centering capacity
for tensile loads, presented by Maureira-Carsalade et al. [30], is proposed in this research.
Figure 1 illustrates the main components of the device, and their interaction is described in
order to characterize the operation and expected attributes, such as self-centering capacity
and proportional dissipation in relation to the displacement demand.
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dimensions in deformed state.

According to Figure 1, the device (1) consists of the following parts: a cylindrical
load transmission shaft (2), a load rings system (3), two sets of clamps (4), two sets of
rigid connecting rods (5), an interconnection system (6), a linear resilient system or spring
system (7), a pretension mechanism (8), and a casing (9) that houses all of these components.
The rings (2) serve as sacrificial elements, concentrating the damage resulting from the
friction force and sliding between each set of clamps (4). This localized damage protects
the remaining components of the device and facilitates restoration to its original condition
by replacing the worn rings.

Each set of clamps is a system of rigid elements pivotally connected at one end to the
casing, while the opposite end features a hook-shaped termination that limits the device’s
deformation by slowing down the movement of the rings. The rigid connecting rod
assembly is pivotally joined to the clamps at one end and connected to the interconnection
element at the other end, allowing the two sets of connecting rods to be linked with the
linear resilient system or spring system. The spring system is connected at its other end
to the pretension mechanism, which is fixed to the casing housing all of the device’s
components. The pretension mechanism enables the application of an initial deformation
or tension to the tension spring system, serving as one of the design variables.

When a relative displacement u is applied between the transmission shaft (2) and the
casing (9), the device reacts with a force F opposite to the direction of the displacement (as
shown in Figure 1b). Part of the deformation u is concentrated in the spring system (∆ue in
Figure 1b), while the remainder is due to the rotation of the clamp, ring, and connecting rod
systems. Under the external load F, the cylindrical shaft (2) transmits the force to the ring
system (3), which then transfers it to both sets of clamps (4). The clamps transmit the force
to the connecting rods (5), and the rods, in turn, pass it on to the interconnection element
(6), ultimately transmitting the force to the spring system (7) fixed to the casing (9) through
the pretension mechanism (8).

The applied force causes deformation in the spring system (the only flexible element),
rotation of the clamps, and slipping and rotation of the ring system (Figure 1b) as it
compresses against the surface of these clamps. Energy dissipation occurs due to sliding
under pressure, resulting in frictional forces between the ring system and the clamps.
Energy dissipation also arises from the relative rotation and friction between the rings
and the cylindrical load transmission shaft, as well as the rotation and friction between
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the clamps at their pivot connection points. These two energy dissipation mechanisms
were not initially considered in the formulation by Maureira-Carsalade et al. [30], but they
represent improvements to the model presented here.

The linear resilient system, arranged as shown in Figure 1a,b, serves three purposes
that characterize the proposed dissipator. Firstly, it enhances the device’s response by
increasing the force in proportion to the imposed displacement. Applying a post-tensioning
load to this element amplifies the response throughout the entire loading–unloading
process of the device. This feature ensures that the dissipator can effectively adapt to
variable displacement demands. Secondly, the linear resilient system enables self-centering,
which refers to the device’s ability to return to its original shape when the external force is
removed. This means that, after experiencing displacement, the dissipator can recover its
initial position, maintaining its functionality and performance. This self-centering capacity
is vital in seismic applications, as it allows the structure to regain stability and resilience
after an earthquake or dynamic event. Thirdly, the linear resilient system establishes a
direct relationship between the displacement imposed on the device and the normal force
between the ring system and the clamp assembly. This proportionality ensures that the
energy dissipation capacity of the device is also proportional to the displacement. As
the device undergoes displacement, the normal force between the transmission shaft and
the rings, as well as between the clamp joints and their pivot-holding pins, increases
in proportion to the force in the spring system. Consequently, the energy dissipated
throughout the entire device is directly related to the elastic force in the spring system.

In sum, by incorporating the linear resilient system into the dissipator design, these
three characteristics contribute to its overall performance. The device is capable of self-
centering and exhibits energy dissipation proportional to the displacement demand. This
enhanced functionality makes the dissipator suitable for seismic protection and other
applications where effective energy dissipation and structural resilience are essential.

2.2. Improvement of the Analytical Model of the Device

The device studied and improved here, which works only in tension, reacts with a
force F that depends on the relative displacement u between the fastening point on its casing
(hole on the left side in Element 9, Figure 1a) and the load transmission cylindrical shaft
(Element 2, Figure 1a). Since frictional forces are involved, the reactive force F also depends
on the deformation rate imposed on the device,

.
u. This reactive force is a consequence of

the mechanical behavior of all of the components of the device described above working
together. To describe said behavior, it is necessary to analyze each component separately,
considering the interaction between them. This interaction must be considered in the
deformed condition, since the displacements are not small compared to the dimensions of
the device. It is first necessary to define the kinematic relationships that link the deformed
configuration of each of the components with the device’s global degree of freedom u.

2.2.1. Kinematic Relations

Figure 1b shows a schematic model of the improved device in a deformed state with its
relevant geometric variables for design purposes. However, for a better understanding of
the geometric relationships and how they are linked to the local degrees of freedom (β, θ, c,
∆ue) and global degree of freedom (u) in the deformed state, a more detailed representation
of that state is shown in Figure 2. This figure only shows one of the two sets of clamps and
the respective ring system in contact with them because this is sufficient to describe the
kinematic relationships.

Figure 2 allows us to determine the position of the center of the contact area between a
ring system and its corresponding set of clamps, given by the local degree of freedom c, as
a function of the imposed displacement u, the half width of the device b, and the thickness
of the rings ea, according to Equation (1). By deriving Equation (1) with respect to time, the
kinematic relationship between the speeds of the local and global degrees of freedom is
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obtained, as shown in Equation (2).

c(u) =
√

b2 + u2 − 2·u·(r + ea) (1)

.
c
(
u,

.
u
)
=

u− (r + ea)√
b2 + u2 − 2·u·(r + ea)

· .u (2)

Buildings 2023, 13, x FOR PEER REVIEW 6 of 32 
 

clamps and the respective ring system in contact with them because this is sufficient to 
describe the kinematic relationships. 

 
Figure 2. Geometric relationships between local degrees of freedom (𝛽, 𝜃, c, 𝛥𝑢௘), and the global 
degree of freedom (𝑢). In orange the DOFs are indicated and in blue the dimensions. 

Figure 2 allows us to determine the position of the center of the contact area between 
a ring system and its corresponding set of clamps, given by the local degree of freedom 𝑐, 
as a function of the imposed displacement 𝑢, the half width of the device 𝑏, and the thick-
ness of the rings 𝑒௔, according to Equation (1). By deriving Equation (1) with respect to 
time, the kinematic relationship between the speeds of the local and global degrees of 
freedom is obtained, as shown in Equation (2). 𝑐ሺ𝑢ሻ ൌ ඥ𝑏ଶ ൅ 𝑢ଶ − 2 ∙ 𝑢 ∙ ሺ𝑟 ൅ 𝑒௔ሻ (1)

𝑐ሶሺ𝑢,𝑢ሶ ሻ ൌ 𝑢 − ሺ𝑟 ൅ 𝑒௔ሻඥ𝑏ଶ ൅ 𝑢ଶ − 2 ∙ 𝑢 ∙ ሺ𝑟 ൅ 𝑒௔ሻ ∙ 𝑢ሶ  (2)

At first sight, it seems that when 𝑢 grows monotonically, 𝑐 grows in the same way. 
However, after a more exhaustive analysis of Equation (1), it was possible to determine 
that 𝑐 decreases in the first deformation stage of the device and then starts to grow mon-
otonically when 𝑢 increases in the same way (Figure 3a). This growth is because the dis-
tance 𝑐 is increased by the rotation 𝜃 of the clamp assembly with respect to its pivot, but 
it is reduced as a result of the same rotation of the ring system. The contribution of the 
first one to the value of c is less than the contribution of the second one in the initial stages 
of the deformation of the device. This trend is reversed for moderate to large displace-
ments 𝑢. This implies that in the incipient deformation stages of the device, 𝑐 will have 
the opposite sign to that of 𝑢ሶ . However, after a certain deformation threshold (the lowest 
point of the curve in Figure 3a), the sign of both velocities is the same. The preceding 
implies that there will be a change in the direction of the friction force between the ring 
system and the set of clamps when 𝑢  passes said deformation threshold. The above 
would result in a discontinuity in the force 𝐹 with which the device responds to the im-
posed displacement 𝑢 and its strain velocity 𝑢ሶ . 

Figure 2. Geometric relationships between local degrees of freedom (β, θ, c, ∆ue), and the global
degree of freedom (u). In orange the DOFs are indicated and in blue the dimensions.

At first sight, it seems that when u grows monotonically, c grows in the same way.
However, after a more exhaustive analysis of Equation (1), it was possible to determine that
c decreases in the first deformation stage of the device and then starts to grow monotonically
when u increases in the same way (Figure 3a). This growth is because the distance c is
increased by the rotation θ of the clamp assembly with respect to its pivot, but it is reduced
as a result of the same rotation of the ring system. The contribution of the first one to
the value of c is less than the contribution of the second one in the initial stages of the
deformation of the device. This trend is reversed for moderate to large displacements u.
This implies that in the incipient deformation stages of the device, c will have the opposite
sign to that of

.
u. However, after a certain deformation threshold (the lowest point of the

curve in Figure 3a), the sign of both velocities is the same. The preceding implies that
there will be a change in the direction of the friction force between the ring system and
the set of clamps when u passes said deformation threshold. The above would result in a
discontinuity in the force F with which the device responds to the imposed displacement u
and its strain velocity

.
u.
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Figure 3. Graphical representation of kinematic relationships as functions of the displacement u.
(a) Longitudinal distance from ring to clamp pivot, c; (b) local degrees of freedom, θ and β.
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The rotation of the clamps and the connecting rods is given by the local degrees of
freedom θ and β, respectively (Figure 3b). These degrees of freedom are kinematically
related to the displacement imposed on the device, u. Applying trigonometry, analytical
relations describing cos(θ), sin(θ), cos(β), and sen(β) were obtained by Maureira-Carsalade
et al. [30] (Equations (3)–(6)). Both degrees of freedom are greater than 0◦ but cannot reach
90◦ in any case, due to the physical connectivity restrictions of the device components.
Consistent with what is expected from the conceptual model of the device, the analysis of
Equations (3)–(6) indicates that θ and β grow monotonically when u grows in the same
way (Figure 3b). Equally, it is shown that the signs of the rotational speeds

.
θ,

.
β, are always

equal to the sign of
.
u. The latter is particularly relevant for the degree of freedom θ, since it

indicates that there would be no discontinuity in the forces and moments due to friction in
the pivots of the clamp systems, except in the case of a reversal of the direction of movement
imposed on the device.

cos(θ) =
b2 − (r + ea)

2

c·b + u·(r + ea)− (r + ea)
2 (3)

sin(θ) =
√

1− cos2(θ) (4)

sin(β) =
a
l
·(1− cos(θ)) (5)

cos(β) =
√

1− sin2(β) (6)

Finally, using Equation (7), the degree of freedom (DOF) of the spring system, ∆ue
shown in Figure 2, is determined by Maureira-Carsalade et al. [30]. The latter only considers
the deformation due to the displacement u of the device, not the initial elongation due to
the pretension of the spring system, ue0.

∆ue = a·sen(θ) + l·[1− cos(β)] (7)

Having described the kinematic relationships between the local DOF (β, θ, c, ∆ue) and
the global DOF (u) of the device, the deformed configuration of each component of it can
be characterized as a function of these degrees of freedom. With the above, it is possible to
determine the internal forces that link each component of the device and, with it, formulate
the equilibrium equations that lead to the response of the device.

2.2.2. Bond Forces between Device Components

Figure 4 shows the shock absorber components in their deformed configuration with
their corresponding bond forces with the other components with which they are in contact.
This allows us to establish the equilibrium equations that lead to the determination of the
reactive force of the device F, due to an imposed displacement u with speed

.
u.

The free body diagram (FBD) of Figure 4a shows the contact forces with the linear
resilient system, FE, and with the two sets of rigid connecting rods, FE1, both equal due to
device symmetry. In the linear resilient system characterization, the linear elastic model
described by Equation (8) is considered. In this, kr corresponds to the axial stiffness of
the spring system, ue0 is its initial deformation, and ∆ue is the elongation due to the
displacement u imposed on the device (Equation (7)). The force that links with the set of
connecting rods, FE1, is of the linear elastic type and can be known after establishing the
equilibrium of the complete system, which leads to Equation (9). For the above, it is only
necessary to know the kinematic relations that link the local degrees of freedom of the
spring system, ∆ue, and the rotation of the connecting rods, β, with the global degree of
freedom of the device, u, implicitly defined by Equations (3)–(7).

FE = kr·(ue0 + ∆ue) (8)
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FE1 = kr·
ue0 + ∆ue

2·cos(β)
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transmission shaft. In orange the DOFs are indicated, in blue the dimensions and in red the forces
and moments.

In the FBD of Figure 4b, the clamp shows the contact forces that interact with it. These
come from the interconnection system, FE1; from the ring system, FN , FR and MN ; and
from the pivoting support at the end opposite to the hook of the clamp system, normal
force A and its friction force FRA. For the definition of the mathematical model, it was
considered that the radius of the contact surface between the set of clamps and its pivoting
support is rP, and the coefficient of friction between both surfaces is µp.

Equations (10) and (11) show the relationship between frictional force and normal
force acting on the clamp systems described above.

FR = FN ·µa·sign
( .
c
)

(10)

FRA = A·µp·sign
( .

θ
)

(11)

The FBD in Figure 4c shows one of the two ring systems with the contact forces
interacting with it. These come from the reaction against the transmission shaft, normal
force B and friction force FRA; the reaction against the ring system, normal force FN , friction
force due to FN and MN , FR; and the moment of the normal strength, friction force due
to FN and MN . On the contact surfaces between the ring system and the set of pliers, a
trapezoidal normal pressure distribution is assumed, with greater tension at the edge where
the force FR points (Figure 4c). This distribution results in a normal force FN , whose axis of
action is eccentric with respect to the center of rotation of the ring system (Figure 4c). Due
to the eccentricity of FN and in order to work with loads applied in the centroid of the area
of the contact zone between the ring system and the clamp assembly, in addition to FN and
FRA, a moment MN is transmitted between the parts (Figure 4b,c). As a result of the relative
rotation between the ring system and the cylindrical load transmission axis of radius r,
a kinematic friction force, FRB, is induced at the point of action of the normal reaction B
(Figure 4c,d). It was considered that the coefficients of friction between the ring system and
the transmission shaft, and between the ring system and the clamp assembly, are the same
and will be called µa. Equations (11) and (12) describe the friction forces mentioned above



Buildings 2023, 13, 2302 9 of 32

and their sense is always opposite to the direction of movement, which is incorporated
with the sign of the local degree of freedom that describes said displacement.

FRB = B·µa·sign
( .

θ
)

(12)

Figure 4c,d show one of the two symmetric systems of rings and the load transmission
shaft, respectively. The two systems of rings and the transmission shaft work in contact
with each other, with the second one attached to one of the points of the structure where
the device is installed. The ring systems transmit the normal loads B and the frictional force
FRB to the transmission shaft. In the FBD of Figure 4d, it is graphically evidenced that the
vertical components of the pair of forces B and FRB cancel each other out.

Based on the FBD in Figure 4a–d, in addition to the analysis presented above, the
equilibrium equations for each component of the device Equations (13)–(19) are established.
Equations (13)–(15) correspond to the rigid body equilibrium on the plane of the clamp
system. Equations (16)–(18) correspond to the rigid body equilibrium on the plane of
the ring system. Finally, Equation (19) corresponds to the particle balance of the load
transmission shaft in the horizontal direction. When observing the FBD of Figure 4d, it is
evident that the balance of vertical forces and moments is fulfilled by the symmetry with
respect to the horizontal plane that cuts the device into two halves.

∑ F(clamp)
x′ = 0⇒ FNµasign

( .
c
)
+ Asin(αA) + Aµpsign

( .
θ
)

cos(αA) = kr

(
ue0 + ∆ue

2·cos(β)

)
sin(θ − β) (13)

∑ F(clamp)
y′ = 0⇒ FN − Aµpsign

( .
θ
)

sin(θ − αA) + Acos(θ − αA) = kr

(
ue0 + ∆ue

2·cos(β)

)
cos(θ − β) (14)

∑ M(clamp)
z′ = 0⇒ FNc− Aµpsign

( .
θ
)

rp −MN = kr

(
ue0 + ∆ue

2·cos(β)

)
acos(θ − β) (15)

∑ F(ring)
x = 0 ⇒ −FNµasign

( .
c
)
sin(θ)− FNcos(θ) + Bcos(αB) + Bµasign

( .
θ
)

cos(αB) = 0 (16)

∑ F(ring)
y = 0 ⇒ −Bµasign

( .
θ
)

sin(αB) + Bcos(αB)− FNsin(θ) = 0 (17)

∑ M(ring)
z = 0 ⇒ FNµa(r + ea)sign

( .
c
)
+ MN − Bµarsign

( .
θ
)
= 0 (18)

∑ F(sha f t)
x = 0 ⇒ F− 2Bcos(αB)− 2Bµasign

( .
θ
)

sin(αB) = 0 (19)

The system of seven equations and seven unknown variables, given by
Equations (13)–(19), establishes the equilibrium conditions that lead to obtaining the re-
sponse of the device in terms of reactive force, F = F

(
u,

.
u
)
. This is a system of nonlinear

equations, since trigonometric functions operating on the unknown variables αA and αB
are included. It should be noted that, when solving this system, the displacement and
deformation rate must be considered as known values. Taking into consideration the
hypothesis of non-deformable constituent elements—except for the linear resilient system
or spring system—all local DOF—β, θ, c, ∆ue in Figure 2—can be linked by trigonometry
with the global DOF of the device, u. Furthermore, these kinematic relationships can be
derived with respect to time to link the deformation rates of the local degrees of freedom
with those corresponding to the device’s degree of freedom, u and

.
u. With the above, all

of the factors related to these local degrees of freedom and their time derivatives become
constant for the purposes of resolving the system of equations (Equations (13)–(19)).

One way to linearize the nonlinear system given by Equations (13)–(19) is by eliminat-
ing the unknown variables αA and αB from the formulation. This can be done by changing
the force vectors in polar coordinates (A, αA) and (B, αB) to their Cartesian equivalents (Ax,
Ay) and (Bx, By) according to the local reference axes shown in Figure 4a–d. This process is
shown graphically in Figure 5a–c.
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Analyzing the FBD of Figure 5a–c, it is possible to verify that the force system in
Cartesian coordinates is equivalent in resultant force to the force system in polar coordinates.
However, there is no equivalence in the resultant moment. This is true for all three
components shown: ring system, transmission shaft, and clamp’s hinged end. Indeed,
when comparing the resulting moments at the inner edge of the ring system, calculated
with the force system in polar coordinates versus that calculated with the force system in
Cartesian coordinates, the following is obtained:

∑ Mz : Polar : FRB·r = µa·B·sign
( .

θ
)
·r,

Cartesian :
(

FRBx + FRBy
)
·r = (cos(αB) + sin(αB))· µa·B·sign

( .
θ
)
·r

(20)

By equating the resulting moments (right side of the equation) in the polar and Carte-
sian coordinates of Equation (20), we obtain that cos(αB) + sin(αB) = 1, which does not
constitute an identity. Therefore, solving the system given by Equations (13)–(19), consider-
ing the approach of force systems in polar coordinates versus the corresponding approach
in Cartesian coordinates, does not lead to the same result, with the polar approach being
the correct one. This phenomenon is because there are not two systems of normal/frictional
forces between a rigid cylinder in contact with the inner edge of a rigid ring; there is only
one. This fact is true between the ring and the transmission shaft, and between the clamp
and the pivot shaft at this hinged end.

Despite the above, when considering the resulting force and moment system calculated
in Cartesian coordinates for the ring system, load transmission shaft, and clamp’s hinged
end (Figure 5a–c), the variables A, αA, B, and αB are changed to Ax, Ay, Bx, and By. The
resulting system of equations that considers these last four variables instead of the first
four is linear and can be written in matrix format as shown in Equation (21), in replacement
of the system of Equations (13)–(19).
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C︷ ︸︸ ︷

1 µpsign
( .

θ
)

µasign
( .
c
)

0 0 0 0

−µpsign
( .

θ
)

1 0 0 1 0 0

−µprpsign
( .

θ
)
−µprpsign

( .
θ
)

0 0 −c −1 0

0 0 −1 −µasign
( .

θ
)

µasign
( .
c
)
sin(θ) + cos(θ) 0 0

0 0 µasign
( .

θ
)

1 −sin(θ) 1 0

0 0 −µarsign
( .

θ
)
−µarsign

( .
θ
)

µa(r + ea)sign
( .
c
)

0 0
0 0 −2 −2 0 0 1



x︷ ︸︸ ︷

Ax’

Ay’

Bx
By
FN
MN

F



=

b︷ ︸︸ ︷

kr

(
ue0 + ∆ue

2cos(β)

)


sin(θ − β)
cos(θ − β)
acos(θ − β)

0
0
0
0



(21)

The solution of the linear system given by Equation (21) is direct and can be considered
as an initial approximation for the resolution of the system given by Equations (13)–(19).
This initial approximation allows us to create an iterative algorithm for solving the afore-
mentioned system of nonlinear equations. Indeed, the initial approximation mentioned
above is considered as the zero-iteration solution (i = 0). With this solution, it is possible
to calculate the magnitudes of the resulting forces at the pivot of the clamp system, A(i),
and between the rings and the load transmission shaft, B(i), with i = 0, 1, 2, . . . according to
Equations (22) and (23).

A(i) =

√(
A(i)

x′

)2
+
(

A(i)
y′

)2
, i = 0, 1, 2 . . . (22)

B(i) =

√(
B(i)

x

)2
+
(

B(i)
y

)2
, i = 0, 1, 2 . . . (23)

With the magnitudes A(i) and B(i) of the initial solution (i = 0), the approximations of
the moments due to the friction of said forces can be improved, as shown in Equations (24)
and (25). In the successive iterations (i = 1, 2, 3, . . .) the moments given by Equations (24)
and (25) would no longer be unknowns, so they can be passed to the right-hand side of the
system of equations defined by (21).

M(i)
RA = F(i)

RA·rp = A(i)·µp·rp·sign
( .

θ
)

, i = 0, 1, 2 . . . (24)

M(i)
RB = F(i)

RB·r = B(i)·µa·r·sign
( .

θ
)

, i = 0, 1, 2 . . . (25)

Considering the above, using Equations (22)–(25), the system of Equation (21) can be
solved iteratively (i = 1, 2, 3, . . .) updating the matrix C

=
and the vector of free terms b in each

iteration. Indeed, knowing the moments given by Equations (24) and (25) with the response
of the previous iteration, these cease to be unknowns, so that the terms in blue of matrix

C
=

in Equation (21) become null, turning it into C
=

′
(

C
=

′
(3,1)

= C
=

′
(3,2)

= C
=

′
(6,3)

= C
=

′
(6,4)

= 0
)

.
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Consequently, the terms 3 and 6 of the vector b (considering b(0) = b) must be updated at
each iteration to obtain vector b(i), as follows:

b(i) = b +



0
0

A(i−1)µprp
0
0

B(i−1)µar
0


sign

( .
θ
)

, i = 1, 2, 3 . . . . (26)

The new system of resulting equations is given by Equation (27), and it must be solved
iteratively for i = 1, 2, 3, . . ., starting from the initial solution (i = 0) obtained from the
system of linear Equation (21), until the convergence of the result is achieved.

C’·x(i) = b(i), i = 1, 2, 3 . . . (27)

The convergence of the solution must be verified at any iterative step by calculating an
error parameter between one iteration and the previous one. To stop iterative calculations,
the calculated error must be less than or equal to a previously defined permissible error.
An example of an error parameter, although it is not the only way to define it, can be the
one given by Equation (28).

ε(i) =

∥∥∥x(i) − x(i−1)
∥∥∥+ ε·εadm∥∥x(i)
∥∥+ ε

, with ε and εadm � 1, i = 1, 2, 3 . . . (28)

The term ε in Equation (28) seeks to avoid a potential uncertainty of the calculated
error when the answer x(i) approaches the null vector. Figure 6 shows a flowchart of
the previously presented nonlinear system resolution algorithm from Equations (21) and
(28) that allows for obtaining the response of the proposed dissipation device given a
displacement forcing u with strain velocity

.
u.
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tion of the frictional dissipator numerical model.
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2.3. Restrictions and Simplifications of the Numerical Model

The numerical model restrictions presented here aim to give it a physical basis and
limit the range of values that the geometric and mechanical parameters of the device
can take. Simplifications of the geometric and mechanical behavior of the device are
suggested to optimize and simplify its mechanical characterization model, leaving out
those combinations of parameters that lead to inefficient responses.

The geometric restrictions limit the relative length of ea, rp, a, l, b, L, and tp (Figure 1b),
defining efficient proportions between them. This limitation allows these six geometric
variables to be reduced to just one, defining the half width, b, of the device as the main
geometric variable. Table 1 shows the geometric restrictions considered.

Table 1. Geometric restrictions of the mechanical characterization model of the proposed device.

Restriction 1 Reason or Explanation for the Restriction 1

ea = 0.3·r
Minimum thickness of the ring system that favors its stability during
sliding against the clamp system. Controls the eccentricity of the
normal ring–clamp contact force and pressure concentration.

rp = 0.09·b
The pivot axis of the clamps should be large enough to resist
transmitted shear load, but not so large as to prevent self-centering of
the device by excessive frictional moment.

a = b− r− ea − tp

Distance that positions the support point of the connecting rods as
close as possible to the ring system in the undeformed position,
making the work of the springs more efficient.

tp = 0.2·b Width of the connecting rods that ensures that they do not fail due to
tensile loads.

l = 2·(r + ea)
Minimum length of the connecting rods. The shorter the connecting
rods, the greater the inclination β for large displacements. This
improves the contribution of the elastic component in that condition.

r = 0.17·b

This must be large enough to allow the cylindrical shaft to transmit
loads with negligible deformation without concentrating pressure
between rings and clamps. It is also related to the dissipation capacity
and strength of the device (Figure 7).

L = 1.7·b

Maximum length of the clamp system that allows a fit without
interlocking between clamps of opposite edges. The length L-b is
associated with the capacity for deformation of the device, which is
maximized at this value of L with respect to b.

1 Graphic support in Figure 1b.

From Figure 7, it can be seen that the lower the r/b ratio, the greater the force F with
which the device reacts to the deformation u imposed, as well as its energy dissipation
capacity. However, if this relationship is greatly reduced, the device responds with a
tendency towards a vertical asymptote for large displacements. The latter is a consequence
of considering very short connecting rods and accentuating their inclination β for large
displacements, generating an overamplified elastic response. This fact is, according to
Equations (21) and (27), due to the response of the device is inversely proportional to
cos(β), which is included in the denominator of the scale factor of the vector of free
terms b in Equation (21). Therefore, when the connecting rod length l is reduced, then
β→ 90◦ for large displacements, accentuating the response of the device in terms of force
and dissipation. This seems beneficial at first sight, but it is not because it drastically
increases the rigidity provided by the device, reducing its deformation capacity in dynamic
conditions and minimizing its effectiveness as an energy dissipator. Due to the above, it
was decided that the optimal relationship to be considered from now on will be r/b = 0.17.
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The restrictions related to the mechanical behavior of the device aim to limit the values
of the physical properties involved in the characterization model of the dissipator. Among
these physical properties are the maximum allowable deformation capacity of the device,
uMA, the initial deformation of the device, u0, and the coefficient of friction between the
ring and the clamps, µa, among others. These restrictions aim to ensure the good behavior
of the device, especially that the dissipator meets its desired attributes: self-centering
capacity and energy dissipation proportional to the deformation demand. Table 2 presents
the restrictions considered.

Table 2. Restrictions related to the mechanical behavior defined for the dissipator device.

Restriction Reason or Explanation for the Restriction

u0 = 0.5·uMA

It is recommended that the device be installed with a pre-tension
equal to 50% of its maximum allowed deformation capacity, uMA,
and always as pairs arranged on opposite bracing diagonals in
the structure. As one device shortens, the opposite device
stretches. The established pre-tension ensures that each device
always works in tension.

uMR ≤ 0.90·u0

It is suggested that the geometric design of the device ensures
that the maximum requested deformation, uMR, of both the
elongation and the shortening device, does not reach the
maximum deformation capacity allowed by the device
(0 < u0 ± uMR < uMA). A reduction factor of 0.9 is considered for
this reason.

µa < 1
tan(θMA)

The indicated limit value was determined according to the
contribution of the friction force equalling the contribution of the
elastic force in the response of the device. This is a function of the
maximum allowable rotation capacity, θMA, of the lamps. It is
assumed that the energy dissipation occurs only between the ring
system and the clamps systems, and between the ring system and
the load transmission shaft.

The maximum displacement that the device can reach is the condition in which both
ring systems lock with the hooks of the respective sets of clamps through which they slide.
This maximum displacement can be calculated by Equation (29), based on the geometric
analysis of the deformation mechanism of the device (Figure 2), as the deformation for
which the ring system slides until it reaches the hooked end of the clamp system.

uMA = r + ea +

√
(r + ea)

2 − b2 + (L− r− ea)
2 (29)
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2.4. Parametric Analysis of the Mathematical Model of the Device

This section analyzes the sensitivity of the mechanical response of the device con-
cerning each design variable, considering the geometric and maximum friction coefficient
constraints defined in Section 2.3 and Tables 1 and 2. These variables are one of geometric
type, b; two related to energy dissipation, µa and µp; and two related to the resistance of
the device, kr and ue0. The combinations resulting from considering three values for each
of these variables were analyzed.

2.4.1. Geometric Variable Analysis

The influence of the geometric variable b—half width of the device, Figure 1b—on the
mechanical response of the device was studied. In this analysis, the numerical models of
devices with three different widths (b = 3, 5, and 7 cm) were studied. The other lengths
were defined based on the restrictions established in Table 1. The other design variables
were considered constant, and their values are indicated in Table 3.

Table 3. Values of design variables considered constant in the parametric analysis in relation to the
geometric variable b.

Assumed Value Meaning of the
Variable

Reason for Which the Assumed
Value Was Chosen

kr = 80 kgf
cm Spring set stiffness.

Spring stiffness equivalent to 4 helical traction
springs whose wire diameter is 5 mm, mean
spiral diameter 20 mm, with 42 spirals and
whose theoretical stiffness is equivalent to 20 kgf

cm .

ue0 = 2 cm Pre-tension deformation
of the spring set.

30% of the elastic limit deformation of the helical
tension of the abovementioned springs.

µa = 0.4
Friction coefficient
ring–shaft and
rings–clamps.

Kinematic friction coefficient between steel
and bronze.

µp = 0.0
Coefficient of friction at
the pivot of each
set of clamps.

This coefficient of friction at the pivot is null due
to the assumption of an ideal hinge
without friction.

Figure 8 shows how the load–unload curve changes as a result of the increase in the
half width b of the device. It is observed that, by increasing b, the energy dissipation
capacity—related to the area enclosed in each curve—of the damper increases, and the
force F with which it responds increases. It is also observed that the force at the beginning
of the loading branch (upper edge curve) and the end of the unloading branch (lower edge
curve) does not change due to the variation in the half width b.
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2.4.2. Analysis of Variables Related to Dissipation

The influence of variables related to energy dissipation on the mechanical response of
the device was studied. These variables are the coefficients of friction between ring–clamp
and ring–shaft, µa, and the friction coefficient at the pivot of the clamps, µp. In the analysis,
the value of one of these variables was fixed, and the second was modified, keeping the
other design variables constant to isolate the effect of each of the variables mentioned above
on the response of the device. For the friction coefficient between the ring–clamp and the
ring–shaft, the values µa = 0.0, 0.3, and 0.6 were considered, 0.66 being the limit value that
allows self-centering for this variable (Table 2). For the coefficient of friction in the pivot
of the set of clamps, the values µp = 0.0, 0.5, and 1.0 were considered. The other design
variables were kept constant considering the following values: b = 5 cm, kr = 70 kgf/cm,
and ue0 =2 cm.

Figure 9 shows the effect of the variables µa and µp on the response of the device
in a complete load–unload cycle. The variable µa has a more significant influence than
the variable µp on the energy dissipation capacity of the device, which is evidenced by a
greater increase in the area enclosed by the curve in the closed loop. Since the response
of the device is not very sensitive to the value of the variable µp, the calibration of its
value with experimental results is much less reliable than the calibration of the variable
µa. The calibration could generate an overestimation of the value of the variable µp that
would not reflect the real working condition of the device. Therefore, from now on, it is
considered a fixed value µp = 0 and the value of the variable µa will only be calibrated with
the experimental results of the device.
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Figure 9. Influence of the friction coefficients between ring–clamp and ring–axis, µa, and in the pivot
of the clamps, µp, on the response of the device. The following variables were considered constant:
kr = 70 kgf/cm, ue0 = 2 cm, and b = 5 cm.

2.4.3. Analysis of Variables Related to Resistance

The influence of these variables was studied through a parametric analysis. These
variables are the stiffness of the set of springs, kr, and the pre-deformation of the set of
springs, ue0. The analysis procedure was similar to that indicated in the previous section.
For the variable kr, the values 40, 60, and 80 kgf/cm were considered; for the variable ue0,
the values used were 0.0, 2.5, and 5.0 cm. The other design variables were kept constant,
considering the following values: b = 5 cm, µa = 0.3, and µp = 0.

Figure 10 shows the effect of the variables kr and ue0 on the response of the device in a
complete load–unload cycle. It can be seen that the higher the value of ue0, the greater the
force F at the start of the device’s load branch. It is also observed that the higher the value
of kr the greater the tangent stiffness in the loading curve, the lower said stiffness in the
unloading curve, and the greater the energy dissipated in a complete deformation cycle.
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2.5. Experimental Analysis and Validation of the Numerical Model

A modular prototype of the proposed device was designed and built in steel (Figure 11).
The prototype was used to verify the fidelity of the mathematical model on the characteri-
zation of the device’s response, and to calibrate its parameters. The device has the basic
configuration of the technology (Figure 1a,b and Figure 11), and its dimensions are constant
(Table 4). It has the capability of exchanging the ring systems to modify the coefficient of
friction; it also has a mechanism to apply a pre-deformation to the set of springs. According
to Figure 11, the prototype (1) is composed of a load transmission shaft (2), a system of
rings for each clamp (3), two clamps opposite each other (4), a pair of connecting rods (5), a
spring–rod interconnection system (6), a set of springs (7), a mechanism to pre-deform the
spring system (8), and a rectangular casing (9).
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Figure 11. Prototype of the device manufactured for execution of experimental proofs of concept.

Table 4. Main dimensions of the device manufactured as a prototype for proofs of concept.

Variable Variable Description (Graphic Reference in Figure 1b) Value (mm)

a Longitudinal distance between the center of the caliper
pivot and the connection point with the connecting rod. 30.8

b Half width of the device or half of the distance between the
pivot points of the opposite clamps. 50.1

ea Ring system wall thickness. 3.6

l Length of connecting rods measured between their
pivoting ends. 23.7

r Load transmission cylindrical shaft radius. 10

rp Radius of each caliper assembly pivot axis. 4.5

L Clamp length measured between its pivot and the
hooked end. 85

tp Width of connecting rods. 10
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Experimental tests of the prototype of the proposed device were carried out (Figure 12a,b).
The tests were performed in a quasi-static manner with displacement control applied. The
deformation was imposed by an electromechanical actuator driven by a Longs Motor brand
stepper motor, model Nema34HST9805-37B2, capable of exerting a maximum torque of 7 Nm,
with rotation control of 1.8◦ per step. The motor was controlled using an Arduino UNO card
connected to a computer. The motor directly drives a ball screw with a diameter of 16 mm
and pitch p = 4 mm/turn. The precision achieved in position control was 0.02 mm per step of
the motor. For measuring the force with which the prototype responded, a Honeywell brand
load cell model IEEE P1451.4 with a capacity of 2000 lb and a sampling rate of 2048 Hz was
used. The imposed deformation was measured using a Hermitt brand inductive displacement
transducer, model KTC-200, with 200 mm travel. The electromechanical actuator has been
programmed to reproduce the displacement sequences shown in Figure 13. All sequences
have a maximum travel of 6 cm, which is the maximum deformation capacity of the prototype
tested. It is important to note that this device only operates in traction, and when faced with
compression loads it behaves rigidly. If the device is required to work for strains imposed in
both directions, it is necessary to apply a pre-tension strain.
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The results obtained for each parameter configuration of the prototype are shown
in Figures 14–16. Each figure exhibits a property of the device to be evaluated, which
corresponds to the variation in the number of springs, initial deformation of the springs,
and materiality of the loading transmission rings.
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Figure 13. Cyclic displacement sequences used in experimental tests. The segmented line corresponds
to the maximum requested deformation uMR ≈ 6 cm, for a device of half width b = 5 cm.
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Figure 14. Experimental results with variation of the stiffness of the linear resilient system: (a) setting
N◦ 1, kr = 41.0 kgf/cm; (b) setting N◦ 2, kr = 61.50 kgf/cm; (c) setting N◦ 3, kr = 82.0 kgf/cm.
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Figure 15. Experimental results with variation of the materiality of the ring system: (a) setting N◦ 1,
bronze; (b) setting N◦ 4, steel; (c) setting N◦ 5, aluminum.
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Figure 16. Experimental results with variation of the initial deformation of the resilient
system: (a) setting N◦ 7, ue0 = 8.0 mm; (b) setting N◦ 6, ue0 = 14.6 mm; (c) setting N◦ 1,
ue0 = 23.0 mm.

2.5.1. Experimental Analysis

The results of experimental tests of the prototype (Figure 11) were obtained for differ-
ent combinations of design parameters, such as coefficient of friction between the parts,
stiffness of the spring system, and initial elongation. The above was obtained with a single
prototype by varying the number of springs and changing the materiality of the rings and
the deformation imposed on the linear resilient system (Table 5). To modify the stiffness of
the elastic element, 2, 3, or 4 springs with a stiffness of 20.5 kg/cm each were installed in the
device. The ring system was made of steel, bronze, and aluminum to vary the coefficient
of friction between the sliding surfaces in contact. The initial deformation of the resilient
system was imposed manually by turning a pre-tensioned screw, considering three different
values. This deformation was then verified or adjusted based on the experimental results
obtained. This was done for each combination of the other two parameters considered.

Table 5. Configurations of the device prototype tested in the experimental validation.

Setting Initial Deformation, ue0(cm) Number of Springs Materiality of the Rings

1 2.35 2 Bronze
2 2.35 3 Bronze
3 2.35 4 Bronze
4 2.35 2 Steel
5 2.35 2 Aluminum
6 1.47 2 Bronze
7 0.66 2 Bronze

The results obtained for each parameter configuration of the prototype are shown in
Figures 14–17. Each figure exhibits a property to be evaluated, which corresponds to the
variation in the number of springs, initial deformation of the springs, and materiality.
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Figure 17. Experimental result of the variation in energy dissipated per one complete cycle due to
the variation in one device parameter. (a) Stiffness kr, (b) ring’s materiality, and (c) pretension ue0.
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The initial deformation ue0 and the stiffness kr of the linear resilient system are vari-
ables related to the resistance of the device and its energy dissipation capacity. From the
results shown in Figures 14, 16 and 17, it is observed that the higher the value of ue0,
kr, or of both, the greater the force with which the device responds and the greater the
energy dissipated by it in a load–unload cycle. The higher the value of ue0 or kr, the greater
the activation force of the device, which corresponds to the initial resistance at which
the load branch of the device begins. This force is the same for each load–unload cycle,
regardless of the amplitude of the deformation imposed in each cycle. The experimental
results also demonstrate that the device has a self-centering capacity, which is more evident
when ue0 6= 0.

The materiality of the rings is related to the coefficient of friction µa, where changing
the materiality of the rings changes the coefficient of friction between ring–clamp and
ring–shaft. As the value of µa increases, the energy dissipation capacity of the device
increases, that is, the energy dissipated in a complete load–unload cycle increases. This
characteristic can be observed in the results shown in Figures 15 and 17. From the results
shown in Figure 17, it can be concluded that the coefficient of friction between steel and
aluminum surfaces is higher than that corresponding to steel–bronze surfaces, and this is
greater than the corresponding steel–steel.

The energy dissipation capacity is the main characteristic that defines a shock absorber,
since this quality is directly related to the decrease in the response of the structure protected
by it. In the results shown in Figures 14–16, it is observed that the device can dissipate
energy and that the energy dissipated in a load–unload cycle increases with greater imposed
deformation in all the study cases. It is shown that the device can function by dissipating
energy against dynamic forcing forces that generate different amplitudes of deformation
in it.

2.5.2. Validation of the Numerical Model and Adjustment of Its Parameters

The objective of this stage is to verify the fidelity of the numerical model presented
in Section 2.2, which considers constructive aspects of the prototype, in reproducing
the mechanical response of the device. This verification was carried out by comparing
the loading–unloading force and energy dissipation curves, obtained from experimental
results, with the corresponding predictions of the numerical model. The latter was done by
calculating a relative error between experimental results and numerical predictions.

The results obtained in the experimental campaign were also used to adjust the global
mechanical parameters of the numerical model. As the experimental adjustment variables
were considered, the pre-stressing deformation of the set of springs (ue0), and the coefficient
of friction between rings–clamps and rings–shaft (µa) were also examined.

First of all, the stiffness of each spring was determined experimentally through quasi-
static load–unload tests (Figures 18 and 19). The sequence of movements used as forcing in
the experimental tests of the springs is the same as that used in the tests of the complete
device. These tests allowed us to obtain the stiffness of each spring. The results allowed us
to determine the resultant stiffness of the linear resilient system used in each configuration
of the prototype, independently of the load–unload tests.
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Figure 19. Quasi-static cyclic test of each spring used in the prototype.

Secondly, independently of the prototype testing, the initial deformation ue0 imposed
on the spring system was determined. This was done based on the number of turns of the
bolt that applies said deformation (component 8 in Figure 11). However, the importance of
this parameter does not lie in the deformation itself, but in the pre-stressing load that this
deformation induces in the spring system. Said load was not measured directly, which makes
it relevant to consider the calibration of the parameter ue0 based on the experimental results.

Finally, the friction coefficient between ring–clamp and ring–shaft (µa) depends on the
materiality and surface finish of each part in contact, in addition to the pressure exerted
between them [8]. However, due to the shapes of these surfaces in contact with the device, it is
difficult to design an isolated experimental test that allows for determining only the coefficient
of traction between ring–clamp and ring–shaft. Therefore, the determination of the parameter
µa was performed by calibrating the numerical model with experimental results.

The adjustment of parameters was carried out using a procedure that seeks, as an objective,
to determine the value of said parameters that minimizes an error objective function between
the experimental and numerical results, as described by Maureira-Carsalade et al. [17]. The
algorithm consists of defining vectors with values of the input variables that are sought to
adjust with experimental results, finding these within the neighborhood of the expected value
of each variable. The expected initial values for the variables to be adjusted are ue0 = 1 cm
and µa = 0.3. In this case, values in the neighborhood between 30% and 300% concerning said
expected value were considered, with increments of 10% between each one. That is, vectors
with values of 30%, 40% . . . 290% and 300% of the reference values were considered in the
procedure. The response of the device was evaluated using the improved numerical model
(Section 2.2) for all the combinations of said input variables, considering the imposed motion
forcing (Figure 13). Then, the error objective function associated with the force-displacement
product, εFu (Equation (30)), was evaluated for each combination of the parameters defined
in the vectors of values of ue0 and µa. The error function gives greater importance to the
differences between experimental and numerical results that occur for large displacements than
to those that occur for small displacements. This fact was defined this way for two reasons:
(i) the design forces of a structural system are usually the greatest that affect it, and (ii) the energy
dissipated by the device increases when the imposed deformation increases. The definition of
the error formula (Equation (30)) conditions the choice of parameters adjusted to a numerical
response with a better fit to the experimental results for large, imposed displacements.

εFu =

∮
|FEx(t)− FT(t)|·du∮

FEx(t)·du
·100% (30)
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Subsequently, the combination of parameters that minimizes the objective error func-
tion was sought; these were considered the new expected values of the variables to be
adjusted. The procedure described above was repeated a second time, defining new vectors
with values for the variables to be adjusted. On this occasion, said vectors were redefined
at around a neighborhood of ±10%, respecting the new expected values, with increments
of 1%. The value of the objective function was calculated again for the new combinations of
the parameters to be calibrated and the combination of parameters that lead to the smallest
error value was sought. This way, the calibrated values of the parameters of interest were
obtained, based on experimental results.

Once the parameter adjustment procedure of the prototype tested in its different
configurations was carried out, in accordance with the above, the error made in the energy
dissipated in a complete load–unload cycle was calculated (Equation (31)).

εEd =

∣∣∣∣
∮
(FEx(t)− FT(t))·du∮

FEx(t)·du

∣∣∣∣·100% (31)

By minimizing the error in Equation (30), the objective is to optimize the fit between
the prediction of the force of the device calculated with the nonlinear algorithm, described
in Section 2.2, and the force measured in the experimental tests. In the above device
parameter fitting, the forcing used in the numerical prediction is known, being the imposed
deformation time series measured in the experimental tests as well as the calculated
deformation velocity. The algorithm described above for these purposes will not necessarily
lead to an optimal adjustment of the device’s energy dissipation capacity, so evaluating the
error made in the dissipated energy is relevant.

2.5.3. Improved Numerical Model Parameter Fitting

Table 6 shows the stiffness kr of the linear resilient system previously determined
through quasi-static cyclic tests of the springs used in the prototype (Figure 18). The initial
deformation ue0 of the linear resilient system and the friction coefficient µa between the
ring–clamp and ring–shaft interfaces is also shown in these tables. Both parameters were
determined by fitting the nonlinear numerical model with experimental results. These
adjustments consider the coefficient of the friction of the clamp pivot to be null (µp = 0).
This is because, according to the parametric analysis of Section 2.4, the response of the
device is not very sensitive to variations in the parameter µp. The error committed by the
numerical model with respect to the experimental results in the determination of the energy
dissipated in a load–unload cycle (calculated with Equation (31)) is also shown in Table 6.

Table 6. Adjusted parameters of the improved model with experimental results.

Setting kr
(kg/cm) ue0 (cm) Materiality of the Rings µa εFu (%) εEd (%)

1 41.0 2.32 Bronze 0.35 5.72 5.23
2 61.5 2.48 Bronze 0.36 4.72 2.95
3 82.0 2.44 Bronze 0.35 5.58 6.42
4 41.0 2.40 Steel 0.38 5.19 3.47
5 41.0 2.54 Aluminum 0.45 5.17 1.55
6 41.0 1.47 Bronze 0.36 6.57 5.73
7 41.0 0.80 Bronze 0.35 4.89 4.25

Mean 5.41 4.23
Std. Dev. 0.62 1.71

Analyzing the results shown in Table 6, it is observed that the friction coefficient
between steel and bronze varies between 0.35 and 0.36; steel–steel and steel–aluminum
friction coefficients are 0.38 and 0.45, respectively. This is consistent with what was observed
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in the loading–unloading curves obtained experimentally, as well as with the results of the
study by Latour et al. [8].

For the case of the initial deformation of the linear resilient system (ue0), an approx-
imate value of said parameter is known a priori (Table 5). This deformation is recti-
fied through the calibration of the numerical model with experimental results for each
setting shown in Table 7. The calculated error reached a maximum value εFu = 6.57%
(Table 7, Setting 6), so it is considered a good calibration of the parameter. For the case of
the error in the energy dissipated in a load–unload cycle, the maximum error is εEd = 6.42%
(Table 7, Setting 3), which is considered a good numerical fit.

Table 7. Adjusted parameters of the simplified numerical model developed for the proof of concept
[30], with the experimental results obtained here.

Setting kr
(kg/cm) ue0 (cm) Materiality of the Rings µa εFu (%) εEd (%)

1 41.0 1.00 Bronze 0.69 18.57 21.00
2 61.5 1.07 Bronze 0.75 17.45 18.91
3 82.0 1.04 Bronze 0.72 17.54 21.54
4 41.0 1.02 Steel 0.77 17.91 19.40
5 41.0 1.10 Aluminum 0.97 19.43 13.35
6 41.0 0.64 Bronze 0.60 14.64 16.93
7 41.0 0.37 Bronze 0.48 9.61 11.85

Mean 16.45 17.57
Std. Dev. 3.36 3.73

Figure 20 shows the load–unload or hysteresis curves by superimposing experimental
results with numerical predictions obtained with the adjusted parameters for some selected
cases. The prediction was calculated using the improved numerical model that considers
constructive aspects of the prototype (Section 2.2).
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In addition to other validations of the numerical model, its performance has been
examined under conditions of various speeds and variations in displacement. As can
be seen in Figures 21 and 22, the numerical model manages to successfully emulate the
behavior of the device in situations with variations both in the deformation amplitude and
in the load speeds. In addition, in Figure 22 it is observed that, when changing the speed,
the response of the device does not show changes due to the frequency of application of
the load.
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2.5.4. Simplified Numerical Model Parameter Fitting

In this section, the validation procedure of the numerical model and adjustment of
its parameters with experimental results are repeated. However, this time the procedure
is applied to the simplified numerical model (Equation (32)) developed by Maureira-
Carsalade et al. [30]. In said numerical model, the authors consider as approximations that
the thickness of the ring system is null (ea= 0), and that the friction between the ring and
the clamps is the only place where the energy dissipation is concentrated (µ = µa, µp = 0).
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The results obtained in the adjustment of parameters of the simplified numerical
model [30] are shown in Table 7. In these results, compared to those obtained with the
improved model (Table 6), it is observed that the initial deformation of the spring system
(ue0) is lower in the simplified model, and the coefficient of friction (µa) is higher on it.
Furthermore, when comparing the calibrated initial deformation (ue0) with the approximate
one (Table 5), differences of up to 57% are observed between them. The coefficient of friction
obtained for the steel–bronze interface varies between 0.60 and 0.75, and for steel–steel and
steel–aluminum this varies between 0.77 and 0.97, respectively. These last results, when
compared with the study performed by Latour et al. [8], show that the one obtained by
the adjustment is not within the measured range in said study. Latour et al. obtained
that for the steel–bronze interface, the friction coefficient varies between 0.12 and 0.30, for
steel–steel it varies between 0.15 and 0.5, and for steel–aluminum it varies between 0.35
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and 0.60. Finally, it can be seen in Table 7 that the error of the numerical adjustment varies
from 9.61% to 19.43%, and the error in the dissipated energy varies from 11.85% to 21.54%.

With the results above presented and the analysis made, it can be concluded that the
improved numerical model has better fidelity in the prediction of the mechanical behavior
of the device.

As observed in Figure 23, the numerical model presented by Maureira-Carsalade
et al. [30] shows a poor to regular fit to the experimental results. It is observed that the most
considerable difference is in the range of smallest displacements, with moderate to good
settings for large displacements. This is because the methodology used to fit the model
parameters seeks to minimize the difference for large displacements. This methodology
applied to the simplified model [30] presents an underestimate of the contribution of the
initial deformation of the set of springs (ue0) and overestimates the coefficient of friction of
the ring (µa). On the other hand, in the case of the improved numerical model presented
here, a more adequate fitting is achieved for both parameters.
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2.6. Difference between Original and Improved Numerical Models

In this section, the differences between the improved model proposed in Section 2.2
and the simplified model proposed by Maureira-Carsalade et al. [30] are analyzed. The
improved numerical model introduces modifications with respect to the simplified model
in the way in which the normal and friction loads are transferred from the transmission
shaft to the clamp system. In the simplified model, the normal and friction loads are
transmitted punctually between the transmission shaft and the clamp system. In the
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improved numerical model, the loads are first transmitted from the transmission shaft to
the ring system as a set of normal and frictional punctual forces. Subsequently, these loads
are transmitted from the ring system to the clamp system as a normal load distributed
in a trapezoidal way, plus its corresponding friction punctual force. This comes from the
understanding that the force exerted at the ring–clamp interface is not punctual because it
causes the ring to rotate. The trapezoidal distributed normal force is finally represented by
a resultant normal force plus the moment, due to the eccentricity of the trapezoidal load
with respect to the center of the ring–clamp contact zone.

The trapezoidal distribution of normal load transmitted at the ring–clamp interface
comes from the understanding that the force exerted by the clamp is not punctual and
causes the ring to rotate. The friction in the axes of rotation of the ring and the clamp
corresponds to the understanding that the reaction of the ring generates friction in the
system, that this reaction is in only one direction, and that it breaks down for two directions
of analysis (Figure 5).

The latter, as explained in Section 2.2.2, would generate a nonlinear analytical solution
but, using the iterative algorithm, a good approximation is achieved. The improved model
contemplates the effect of the displacement of the ring along the clamp (c(u)), which for
small deformations of the device decreases and then increases (Figure 3). Finally, all these
considerations, as shown in the experimental validation, cause a better adjustment to the
experimental results of the improved numerical model than the simplified model, as was
evidenced in the previous section.

The above and summarized in Table 8, leads to a nonlinear analytical solution of the
improved numerical model of the dissipator and, using the iterative algorithm, a good
approximation is achieved. Finally, all these considerations, as shown in the experimental
validation, cause a better adjustment to the experimental results of the improved numerical
model than the simplified model, as was evidenced in the previous section.

Table 8. Difference between the original simplified model and the improved numerical models.

Considerations Simplified Model Improved Model

Shaft–Ring
Transmission Load

It does not consider the existence of
the ring. It assumes that the ring’s
wall thickness is negligible. There is
no friction between the shaft and the
rings, underestimating the energy
dissipation capacity.

There is transfer of normal
force and punctual friction
between shaft and rings.
Consider energy dissipation
between both parties.

Ring–Clamp
Transmission Load

The existence of the ring system is not
considered. Load transfer occurs
directly between shaft and clamp.
Normal and friction loads are
considered to be transmitted in a
punctual manner.

Trapezoidal distributed
normal load transfer is
considered. The resulting
loads are normal force,
friction, and moment. This
leads to a better adjustment of
the numerical results with the
experimental ones.

Adjustment to
Experimental Results

It has a moderately good fit for large
displacements. The adjustment is
poor for small displacements. It does
not reproduce the experimentally
observed difference between the
loading and unloading curve for
incipient displacements when the
device is prestressed.

It has a moderate to good fit
with experimental results for
both small and large
displacements. It reproduces
the discontinuity in the
response for incipient
displacements, observed
experimentally when the
device is prestressed.



Buildings 2023, 13, 2302 28 of 32

3. Conclusions

A prototype of the energy dissipation device for tensile loads proposed in the proof
of concept by Maureira-Carsalade et al. [30] was built in steel. A conceptual model of
this that considers all the components of the built prototype was presented to improve
the simplified numerical model developed in the proof of concept. The numerical model
for characterizing the device’s response was reformulated based on the aforementioned
conceptual model. A nonlinear numerical model was developed, which constitutes an
improvement on the simplified model proposed by Maureira-Carsalade et al. [30].

A parametric analysis of the nonlinear improved model for the characterization of
the dissipation device was carried out to evaluate the influence of the design variables
on its mechanical response. The analysis allowed us to identify the feasible ranges of the
design variables. It also made it possible to define ad hoc or optimal values for six of the
seven geometric variables based on the half width b of the device, significantly simplifying
its geometric design. The numerical results also allowed us to conclude that the stiffness
kr of the spring system and its initial deformation ue0 strongly condition the force with
which the device responds and its capability to dissipate energy in a load–unload cycle. It
was determined that the energy dissipation is obtained mainly by the work of the friction
load between the ring system sliding with respect to the set of clamps. Secondary energy
dissipation mechanisms were observed due to the work of the rotation of the ring system
with respect to the load transmission shaft. A much less important energy dissipation
mechanism was observed in the work between the rotation of the clamps and the moment
due to friction in their pivotal support. Due to the above, it is suggested to neglect this
energy dissipation mechanism. Therefore, the dissipated energy is strongly controlled by
the coefficient of friction µa between rings–clamps and rings–shaft. It is also related to
the stiffness of the spring system (kr) and its initial deformation (ue0). This is because kr
and ue0 are directly related to the normal forces between shaft–ring and ring–clamp. Both
are related to friction forces through the variable µa, these forces being those that give the
device its energy dissipation capacity. Finally, it was determined that when ue0 = 0, the
friction coefficient between shaft–ring and ring–clamp must fulfil that µa < tan(θMA) to
have a self-centering capacity in the device, with θMA as the maximum admissible rotation
of the clamp systems with respect to their pivots.

The stiffness of the components that conform to the linear resilient system (spring
system) of the device was determined experimentally. The prestressing deformation (ue0)
and the coefficient of friction between the shaft–ring–clamp (µa) were calibrated with
experimental results. In the same way, the parameters ue0 and µa were calculated for
the simplified numerical model proposed by Maureira-Carsalade et al. [30]. The results
showed that the fitting with the experimental results was better for the improved model
than for the simplified model. The improved model achieved a better adjustment in the
response of the device for the force in the load curve, the force in the unload curve, and the
energy dissipated. It was also able to better predict the discontinuity in the response for
incipient displacement, observed in the experimental response due to the initial pretension
of the device.

A modular prototype of the dissipation device was designed and built in steel, with
similar characteristics to those that would be considered in a real application. The prototype
has fixed dimensions but allows the ring system to be switched for others of different
materials to modify the coefficient of friction µa between shaft, ring, and clamp. It also
allows for changing the number and type of springs that conform to the linear resilient
system of stiffness kr. In addition, it can allow different initial deformations ue0 to be applied
to the linear resilient system of the prototype. An experimental campaign was carried out
considering different combinations of the design parameters µa, kr, and ue0. Each prototype
configuration was subjected to a sequence of cyclical load–unload displacement. The seven
tests carried out in this campaign allowed us to demonstrate the fidelity of the improved
numerical model to predict the experimental behavior of the device.
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The above experimental results allowed for calibrating the values of the prototype’s
design parameters and verifying the fidelity of the nonlinear improved numerical model
in the prediction of its mechanical response, in terms of force and energy dissipation
capacity. It was shown that the numerical model is representative of the device, obtaining a
maximum observed error of 6.57% in the force and a maximum observed error of 6.42% in
the energy dissipated in a load–unload cycle. For the materiality of the rings considered in
the tested prototype configurations, it was observed that the coefficient of friction between
the steel–aluminum interfaces is greater than that corresponding to the steel–bronze and
steel–steel interfaces.

In summary, it was possible to improve the numerical model proposed by Maureira-
Carsalade et al. [30], achieving a better representation of the constituent elements of the
device prototype. The mechanical parameters of the improved nonlinear numerical model
developed for the device were calibrated based on experimental results, verifying the
fidelity in the prediction of the experimental response. All of the above has allowed us to
conclude that the device studied here has the potential to be used as a vibration control
mechanism for structural systems against the action of dynamic loads.

Two future works are proposed as a continuation of this research. The first one is a
verification of the effectiveness of the device in the enhancement of the seismic performance
of structures by a parametric numerical analysis. The second one is the development of a
simpler phenomenological flag-type model, with parameters that could be defined based
on the geometry and basic mechanical characteristics of the physical model presented
here. The model could be implemented in commercial structural analysis software for
engineering designs, facilitating technology transfer to industry.
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Nomenclature

A Reaction at the clamp pivot (Figure 4b, Equation (22)), in kg.
Ax′ Reaction on the pivot of the clamp in the x′ direction (Figure 4b), in kg.
Ay′ Reaction on the pivot of the clamp in the y′ direction (Figure 4b), in kg.

a
Distance between the center of the pivots of the caliper and the connecting rods (Figure 4b),
in cm.

αA Angle of application of reaction A concerning the local axis y′ rotation (Figure 4b), in rad.
αB Angle of application of reaction B concerning the local axis and rotation (Figure 4d), in rad.
b Average distance between the axes of the clamps (Figure 1b), in cm.
b Vector of known forces and moments (Equation (21)), for the initial solution.
b(i) Vector of known forces and moments (Equation (26)), for iterative calculations.
B Reaction at the pivot of the rings (Figure 4b, Equation (23)), in kg.
Bx Reaction at the pivot of the rings in the x-direction (Figure 4b), in kg.
By Reaction at the pivot of the rings in the y-direction (Figure 4b), in kg.
β Rotation angle of the connecting rods (Figure 4b), in rad.

c
Local degree of freedom that represents the distance between the axis of the clamp and
the center of the ring system (Figure 4b), in cm.

.
c Speed of the ring system in the direction of the pivot of the clamps, in cm/s.

C
Kinematic matrix of linear components of the system of equations (Equation (21)), for the
calculation of the initial approximated solution.

C’
Kinematic matrix of linear components of the system of equations (Equation (21)), for the
calculation of the initial approximated solution.

ea Thickness of the ring system (Figure 1b), in cm.
ε Positive number near zero, to avoid lack of definition in the defined error ε.

εFu
Error of the numerical model to predict the force concerning the displacement about the
experimental results, in %.

εEd
Error of the numerical model to predict the dissipated energy about the experimental
results, in %.

ε Approximation error in the reaction in one iteration (Equation (27)).
εadm Admissible error of the approximation in the iterative calculation (Equation (27)).
F Reactive force of the energy dissipator (Figure 4c), in kg.
FE Equivalent elastic force of the spring system (Figure 4a, Equation (8)), in kg.

FE1
Equivalent elastic force of the spring system projected on the clamp (Figure 4b,
Equation (9)), in kg.

FEx Reactive force of the energy dissipator determined experimentally, in kg.
FN Normal force applied by the clamps on the ring system (Figure 4c), in kg.
FR Friction force between the interface of the rings and clamps (Figure 4c), in kg.
FRA Friction force on the axis of rotation of the tongs (Figure 4b), in kg.
FRB Friction force on the axis of rotation of the ring system (Figure 4c), in kg.
FRBx Friction force on the axis of rotation of the ring system in the x-direction (Figure 5b), in kg.
FRBy Friction force on the axis of rotation of the ring system in the y direction (Figure 5b), in kg.
i Iteration counter.
kr Equivalent stiffness of the linear resilient system, in kg/cm.
l Length of the connecting rods (Figure 2), in cm.
L Length of the clamps (Figure 2), in cm.
MN Moment in the ring system due to the eccentricity of the normal force (Figure 4c), in kg-cm.
µa Coefficient of friction in the ring system.
µp Coefficient of friction on the axis of the clamps.
r Radius of the cylinder (Figure 1), in cm.
rp Radius of the pivot of the clamp, (Figure 1), in cm.
tP Width of the connecting rods, in cm.
θ Local degree of freedom of the clamps (Figure 4b), in rad.
θMA Maximum angle of rotation of the clamps (Table 2), in rad.
.
θ Rotational speed of the grippers, in rad/s.
u Displacement or deformation imposed on the device (Figure 1).
.
u Deformation velocity of the device (Figure 1).
ue0 Initial deformation of the linear spring system, in cm.
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∆ue
Deformation induced in the linear spring system as a result of the displacement (Figure 4a)
in cm.

uMA Maximum displacement imposed on the device (Figure 1).
x Vector of unknowns of the linear system (Equation (21)) for initial solution.
x(i) Vector of unknowns of the Equation (26), for iterative calculations.
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