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Abstract: Solvatochromic dyes are utilized in various chemical and biological media as chemical
sensors. Unfortunately, there is no simple way to predict the type of solvatochromism based on the
structure of the dye alone, which restricts their design and synthesis. The most important family
of solvatochromic sensors, pyridinium phenolate dyes, has the strongest solvatochromism. Using
a natural population analysis (NPA) of the natural bond orbitals (NBO) of the phenolate group in
the frontier molecular orbitals, it is possible to calculate the relative polarity of the ground state
and excited state and, thus to develop a model that can predict the three types of solvatochromism
observed for this family: negative, positive, and inverted. This methodology has been applied to
thirteen representative examples from the literature. Our results demonstrate that the difference
in the electron density of the phenolate moiety in the frontier molecular orbitals is a simple and
inexpensive theoretical indicator for calculating the relative polarity of the ground and excited states of
a representative library of pyridinium phenolate sensors, and thus predicting their solvatochromism.
Comparing the results with the bond length alternation (BLA) and bond order alternation (BOA)
indices showed that the NPA/NBO method is a better way to predict solvatochromic behavior.

Keywords: solvatochromism; phenolate dyes; zwitterionic structure; quinoid; charge transfer

1. Introduction

Solvatochromic dyes have been used for years to gather information about chemical
and biological systems [1–8] because the intramolecular charge transfer in this class of
molecules shifts accompanying medium polarity changes. Depending on the direction of
this shift, three types of solvatochromic behavior have been recognized in the literature:
negative, positive, and inverted solvatochromism [9,10]. When the medium polarity
increases, negative solvatochromic dyes progressively displace their absorption band
to shorter wavelengths (hypsochromic shifts). In contrast, if a progressive change to a
longer wavelength of the absorption band of the dye is observed (bathochromic shifts), the
compound is classified as a positive solvatochromic dye. Finally, inverted solvatochromic
dyes shift from positive to negative solvatochromic behavior at a specific polarity value,
called the inversion point.

The pair of phenolate/electron-poor heterocycles are the most studied motif due to
the significant solvatochromic ranges they usually exhibit [10]. The chemical structure
of these dyes can be represented by the joint of a donor and an acceptor fragment in
the general formula X–Y. Charge transfer in this class of dyes goes from one side of the
molecule to the other, causing a substantial difference in the dipolar moment between the
ground (µg) and the excited state (µe). Indeed, solvatochromism has traditionally been
explained based on the relative stabilization of these two electronic states (Figure 1) [11,12].
As shown in Figure 1, negative solvatochromic dyes exhibit a more polar ground state
than their corresponding excited state (µg > µe). Therefore, when the solvent polarity
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increases, the energy gap between these two states also increases due to ground state
stabilization (∆ET

3 < ∆ET
4 < ∆ET

5 in Figure 1). In contrast, if the excited state is more
polar than the ground state of the dye, a systematic decrease in the energy gap will be
observed because of the higher excited state stabilization, causing positive solvatochromism
(∆ET

1 > ∆ET
2 > ∆ET

3 in Figure 1). Although the reasons for inverted solvatochromism
are still unknown, this behavior has also been interpreted under this traditional model,
postulating an inversion of the relative polarity between the ground and the excited state,
passing from µg < µe in the positive solvatochromic part of the curve to a µg > µe in the
negative part [13–17].
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Figure 1. Schematic representation of the influence of the solvent polarity on electronic transition
energy in dipolar solvatochromic dyes [11,12].

The schematic model shown in Figure 1 [11,12] serves for a posteriori interpretation of
the experimental data, but cannot be easily applied to predict the spectral behavior of novel
dyes because, in most cases, it is not easy to determine whether the ground or excited state
is the most polar state.

Solvatochromic dyes (of general formulae X–Y) are highly conjugated molecules and
can display a continuum variation of their ground state structure; for example, the ground
state of Brooker’s merocyanine 1 (Figure 2) can be represented by the zwitterionic limit
1a (XZ–YZ), the low polar quinoid-like structure 1b (XQ–YQ), or a polymethine-like struc-
ture between them. In fact, according to the traditional model (Figure 1), an inverted
solvatochromic dye such as 1 should exhibit a less polar ground state (similar to 1b) than
its corresponding excited state (similar to 1a) in low-polarity media where positive solva-
tochromism dominates. The charge-transfer band, in this case, will show an electronic den-
sity flow from the 1-methyl-1,4-dihydropyridine moiety XQ to the 2,5-cyclohexadien-1-one
moiety YQ. In contrast, in the negative solvatochromic part of the experimental curve,
the ground state should exhibit a more polar structure (similar to 1a) than its correspond-
ing excited state (similar to 1b), with a charge transfer flow from the phenolate YZ to
the N-methylpyridinium XZ. The variations in the ground state of solvatochromic dyes
due to medium polarity changes have received computational [13–17] and experimental
support [18–20].
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Quantum-mechanics calculations have been employed to relate the structure and
solvatochromic behavior of phenolate dyes. We have reported relationships between the
three types of solvatochromism exhibited by phenolate-based dyes with their chemical
hardness [22], electrophilicity [23,24], and Fukui functions [25]. None of these approaches
has been able to predict the solvatochromic behavior of a large library of dyes without out-
lier cases, and none of these models have a chemical relationship with the traditional model
typically employed to rationalize the solvatochromic tendency of a dye. As far as we are
concerned, there have been no successful attempts to apply the model depicted in Figure 1
to the computational prediction of the solvatochromic tendencies of a large collection of
dyes. BLA methodology has been applied with outstanding qualitative reproduction of the
inverted solvatochromism of Brooker’s merocyanine 1 [26,27]. Moreover, whereas the BLA
index is considered merely a measure of the geometric structure of molecules in conjugated
systems, the BOA incorporates information about the electronic structure of pi-conjugated
molecules [28]. When positive BLA values or negative BOA values are obtained from a
molecule’s computation, the molecule is said to be in a neutral or quinoid ground state. On
the other hand, if the BLA value is found to be negative and the BOA value is found to be
positive, this indicates that the ground state of the molecule is either charge-separated or
zwitterionic. However, solvatochromic dyes have not been evaluated using this methodol-
ogy. Natural population analysis (NPA) of the natural bond orbitals (NBO) is still another
method for computationally evaluating the model depicted in Figure 1, as it permits the
calculation of the relative polarity of the ground state of a phenolate solvatochromic dye as
the ratio of the two mesomeric limits that represent its structure.

This study applied the BLA and BOA indices and the NPA/NBO approach to a
collection of thirteen representative solvatochromic dyes. We demonstrate that the BLA
and BOA are extremely sensitive to their definition and application to the molecular
structure of the dye. In contrast, the application of natural population analysis (NPA) to
natural bond orbitals (NBO) is a superior index, allowing for the computer reproduction of
the conventional model depicted in Figure 1.

2. Results and Discussions
2.1. The Library Employed in This Work

We applied our theoretical protocols to the thirteen phenolate solvatochromic dyes
shown in Figure 3. The library includes negative, positive, and inverted solvatochromic dyes.

Brooker’s merocyanine 1 was the first inverted solvatochromic dye reported in the
literature with a solvatochromic inversion in chloroform solution [21]. Dye 2 is the azo
version of 1 and shows a positive non-linear solvatochromic behavior without an explicit
solvatochromic inversion [29]. Benzothiazolium 3 is a positive solvatochromic dye, showing
the same azo bridge as dye 2, but a more electron-rich and annulated acceptor moiety [29].
The solvatochromic behavior of 4–6 varies with the increase in the annulation of the
acceptor moiety X, passing from a truly negative solvatochromic behavior in 4 to a behavior
represented by a negative non-linear solvatochromic behavior for 5 [30]. Finally, dye 6 with
the more annulated acceptor part of the series exhibits a clear inverted solvatochromism
with an inversion point in 2-butanol solution [30].

The solvatochromism of 7–9 varies with the degree of coplanarity between the phe-
nolate and pyridinium groups [31], from a genuinely negative solvatochromism for dye
7, which presents the most hindered R substituents (R = i-Pr), to a non-linear negative
solvatochromic behavior in the less steric hindered dye 8 (R = H). The analog 9 reported
by Barzoukas et al. [32] is a more annulated version of dye 8 and displays inverted solva-
tochromism, with an inversion point in dimethyl sulfoxide solution. Dye 10, known as Re-
ichardt’s betaine, is a negative solvatochromic dye widely used as a polarity sensor, whose
behavior has been extensively reviewed [9,10]. Finally, dyes 11–13 are three solvatochromic
dyes that show negative non-linear solvatochromic behavior [33,34].
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A few years ago, we called attention to this very scarce class of compounds, such as
2, 8, and 11–13, which do not display linear solvatochromic or inverted behavior, proposing
a new classification of them as borderline solvatochromic dyes [34]. Therefore, we included
them in our list as a challenging test for our protocol, trying to predict the spectral tendency
of a group of dyes with an intermediate solvatochromic behavior. However, to maintain
the traditional classification of three types of solvatochromism (negative, positive, and
inverted), we decided to leave these dyes as positive or negative in Table 1 because they do
not show a clear point of inversion.

Table 1. BLA (Å) and BOA index values for solvatochromic dyes 1 (inverted), 2 (positive), and 10
(negative) computed with the two pathways, P–P and P–N, as shown in Figure 4.

BLA Index

Dye Solvatochromism Pathway Gas-Phase CHCl3 Me2SO H2O

1 Inverted P–P 0.064 0.044 0.032 0.034
P–N 0.083 −0.062 −0.049 −0.051

2 Positive P–P 0.074 0.058 0.049 0.049
P–N −0.098 −0.082 −0.072 −0.072

10 Negative P–P −0.027 −0.017 −0.013 −0.013
P–N 0.088 0.069 0.062 0.062

BOA Index

Dye Solvatochromism Pathway Gas-Phase CHCl3 Me2SO H2O

1 Inverted P–P −0.302 −0.266 −0.240 −0.244
P–N −0.408 0.369 0.341 0.345

2 Positive P–P −0.317 −0.290 −0.273 −0.272
P–N 0.421 0.391 0.373 0.372

10 Negative P–P 0.051 0.033 0.025 0.025
P–N −0.144 −0.112 −0.097 −0.096
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2.2. The BLA and BOA Indices for Solvatochromic Tendency Predictions

First, we determined the BLA and BOA indices for a set of dyes typical of each of
the three possible solvatochromic tendencies. For example, dyes 1, 2, and 10 correspond
to inverted, positive, and negative solvatochromism. Unfortunately, there is no universal
definition of how many atoms in the π-systems of a conjugated system need to be taken
into account in order to calculate the BLA and BOA indices. As a result, we determined
the two molecular pathways necessary for the computation of BLA and BOA, which are
depicted in Figure 4. Both routes incorporate the nitrogen atom of the pyridinium ring
and the oxygen atom of the phenolate; however, the number of atoms of the acceptor
moiety that are factored into the computation of the indices are different for the two routes.
Based on the fact that the charge-transfer band of solvatochromic dyes results from an
electronic density flow change from the donor to the acceptor group of the molecules, these
two mechanisms are possible. Depending on the nature of the ground-state structure of the
dye, these two groups are represented by the XQ/YQ or XZ/YZ fragment pairs, but always
with an oxygen and nitrogen-containing substructure (Figure 2). The P–P pathway is the
one that connects the phenolate moiety to the pyridinium moiety, while the P–N pathway
only connects the phenolate moiety to the positively charged nitrogen.

The application of the BLA and BOA indices to phenolate-based solvatochromic dyes
could determine whether the dyes’ ground state is zwitterionic or quinoidal. According
to the definitions of these indices, zwitterionic ground states have negative BLA values
and positive BOA values, whereas quinoidal ground states have positive BLA values and
negative BOA values. Table 1 shows the BLA and BOA values that were calculated for
Brooker’s merocyanine 1, azo-Brooker’s merocyanine 2, and Reichardt’s betaine 10 in four
medium polarities, from gas to water.

The results in Table 1 show positive BLA values and negative BOA values for dye
1 along the solvent polarity range studied when the P–P pathway is considered for
the calculation.

The obtained BLA and BOA values indicate a predominance of the quinoidal character
in the ground-state structure of the dye (XQ–YQ). Thus, the BLA and BOA indices for
the P–P pathway wrongly predicted the solvatochromic inverted dye 1 as positive. Nev-
ertheless, when the P–N pathway is employed, the change from a quinoidal (XQ–YQ) to
a zwitterionic (XZ–YZ) ground-state structure is observed as an inversion in the sign of
the calculated values in the passage from the gas phase to chloroform (CH3Cl). When the
P–N pathway is employed, the BLA and BOA indices correctly predict the experimental
solvatochromic tendency observed for dye 1 as an inverted solvatochromic dye.
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Only positive BLA values were observed for dye 2 in the passage from the gas phase
to water via the P–P pathway (Table 1), indicating that a quinoidal ground-state structure
(XQ–YQ) predominates over the entire solvent polarity window. The same conclusion
was obtained from the calculated BOA values, which showed a negative sign in all of the
media. Therefore, both BLA and BOA accurately anticipated that dye 2 was a positive
solvatochromic compound due to its quinoidal ground-state structure. The opposite
conclusion was reached, however, when the P–N route was employed. Both the BLA and
BOA indices incorrectly predicted a charge-separated or zwitterionic ground-state structure
(XZ–YZ) for dye 2, which is typical for dyes with negative solvatochromism.

In the transition from the gas phase to the continuum, the application of the P–P
pathway for dye 10 revealed negative BLA values and positive BOA values, indicating a
zwitterionic ground-state structure and a negative solvatochromic behavior. Nevertheless,
if we use the P–N route, the BLA and BOA values indicate a neutral or quinoid structure
in the transition from the gas phase to water, incorrectly predicting the iconic negative
solvatochromic dye 10 to be a positive solvatochromic dye.

In conclusion, the results for dyes 1, 2, and 10 (Table 1) demonstrate that the BLA and
BOA indices are highly dependent on the chemical pathway considered during their calcu-
lation. For example, the BLA and BOA indices in the P–P pathway accurately predicted the
solvatochromic tendency of positive dye 2 and negative dye 10, but incorrectly anticipated
that inverted dye 1 is a positive solvatochromic dye. Alternately, if the P–N route is taken
into account, the same indices accurately predict the inverted solvatochromism of 1. To
overcome these ambiguities, we decided to investigate the natural population analysis
(NPA) of the natural bond orbitals (NBO) as an alternative computational method for
solvatochromic predictions of the phenolate-based dyes depicted in Figure 3.

2.3. Prediction of the Solvatochromic Tendencies by the Natural Population Analysis (NPA) of the
Natural Bond Orbitals (NBO)

Equation (1) [35] can be employed to quantify the characterization of the electronic
transition of a dye as a partial charge-transfer (CT) in terms of the percentage of participa-
tion of the molecular subunits X and Y of a molecule with the general formula X–Y.

CT (%) = 100 × (PY
g − PY

e) (1)

We defined Y as the electron-donor fragment during the electronic transition, and PY
g

and PY
e as the electronic densities of fragment Y in the ground state and the excited state,

respectively. Equation (1) can be rewritten using the atomic orbital contributions to the
molecular orbitals involved in the electronic transition [36]. In particular cases such as the
dyes studied here (see Supplementary Materials), exhibiting the HOMO–LUMO transition
as the primary transition in the pass from S0 to S1, the CT character in the percentage of the
fragment Y can be defined as:

CT (%) = %YHOMO − %YLUMO (2)

The compositions in the percentage of molecular orbitals between fragments can be
easily obtained using the AOmix software, which uses the information from the previously
computed NPA calculations. This information for the Y fragment of a dye can be employed
in Equation (2) to obtain the CT values, and subsequently, a solvatochromic tendency
prediction for a dye after employing various solvent permittivity values.

The ICT of all dyes in our library involved HOMO → LUMO as the primary elec-
tronic transition responsible for the solvatochromic band observed experimentally. This
nature of the electronic transition was validated using a DFT-level spectrum computa-
tion. Representative examples of the calculation of natural transition orbitals (NTOs) for
dyes 1 (inverted), 2 (positive), and 10 (negative) in the gas-phase can be found in the
Supplementary Materials. Therefore, the zwitterionic (XZ–YZ) or quinoidal (XQ–YQ) char-
acter of the ground state of the phenolate dyes shown in Figure 3 (shown as zwitterionic
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canonical formulae, their quinoidal canonical formulae can be seen in the Supplementary
Materials) can be quantified by computing the participation of the atomic orbitals of frag-
ment Y in the HOMO and the LUMO of the whole molecules according to Equation (2).
Thus, if fragment Y exhibits higher participation in the ground state (%YHOMO > %YLUMO)
across the entire polarity range, the resulting dye will display negative solvatochromism,
with electronic flow from the phenolate moiety to the positively charged heterocycle as a
consequence of the predominant zwitterionic character of this state, a situation represented
by the XZ–YZ formula. In contrast, if fragment Y shows higher participation in the LUMO
of the dye throughout the entire solvent polarity range, positive solvatochromism will be
observed because of a quinoidal structure predomination in the ground state, a situation
represented by the XQ–YQ formula. In this last case, the electronic charge will flow from
the neutral heterocyclic subunit (XQ) to the 2,5-cyclohexadien-1-one moiety (YQ). Finally,
inverted solvatochromic dyes will show a pass from CT negative values to CT positive
values at a specific medium polarity.

We applied this protocol to compounds 1–13 in the gas phase and three solvents of
increasing polarity: chloroform, dimethyl sulfoxide, and water. As seen in Table 2, varying
the polarity of the medium led to a progressive variation in CT values.

Table 2. Percentile difference between the electronic density participation of fragments X and Y in
the HOMO and LUMO (CT) of dyes with the general formula X–Y.

Dye Solvatochromism Gas-Phase CHCl3 Me2SO H2O

1 Inverted −1.0 5.5 9.8 9.3
2 Positive −18.5 −10.5 −6.3 −6.0
3 Positive −37.7 −33.0 −30.6 −30.4
4 Negative 4.9 13.2 17.4 17.7
5 Negative 1 6.3 15.5 21.0 21.3
6 Inverted −4.5 3.5 7.5 9.9
7 Negative 1 38.6 44.2 47.3 47.5
8 Negative 41.7 48.2 52.5 52.8
9 Inverted 27.6 31.9 34.1 34.4
10 Negative 66.0 71.5 74.5 74.6
11 Negative 1 51.4 57.0 59.7 59.8
12 Negative 1 33.4 37.1 38.7 38.8
13 Negative 1 21.6 25.9 28.2 28.3

1 The experimental solvatochromism of this dye shows a parabolic curve but without a clear inversion point.
Here, we classified the dye as a negative solvatochromic compound, but this kind of spectral behavior has been
proposed as borderline solvatochromism [34,37].

The variation in the calculated CT values with the solvent polarity predicted the correct
spectral tendency for inverted solvatochromic dyes 1 and 6, negative solvatochromic dyes
4–5, 7–8, and 10–13 as well as positive solvatochromic dyes 2 and 3.

Reichard’s betaine 10 is a paradigmatic example of a pyridinium phenolate dye that
shows negative solvatochromism [9,10]. The increase in the positive CT value obtained
for dye 10 when the polarity of the medium increased (Table 2) shows an unequivocal
negative solvatochromic behavior because of a highly zwitterionic ground state (XZ–YZ).
Interestingly, the CT values obtained for dye 10 were the largest of the set studied, clas-
sifying 10 as the dye with the most zwitterionic ground state in the library. Dyes 11–13
exhibited negative solvatochromic behavior [33,34], and their solvatochromic tendency was
well-predicted by our theoretical model, with CT values accompanying the increase in the
polarity of the medium. Finally, the CT values obtained for dyes 7 and 8 assigned them as
negative solvatochromic compounds, again, in agreement with the spectral behavior they
showed experimentally [31,32].

The pass from negative to inverted solvatochromism by increasing the annulation of
the acceptor moiety in pyridinium-phenolate dyes has been reported [30], and recently,
we have demonstrated that this arises from an increase in the sensitivity of the dye to
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solvent polarizability [38]. In series 4–6, the solvatochromic behavior was modified by
the increment in the annulation of the acceptor moiety, passing from negative to inverted
solvatochromism, all being well predicted by our protocol.

In the present work, we proposed the percentage of participation of phenolates in
HOMO and LUMO as a measure of the zwitterionic (XZ–YZ) or quinoidal (XQ–YQ) character
of the ground-state structure of the dye. As shown in Figure 5, a variation in this percentage
[(XQ–YQ)-(XZ–YZ)] with the medium polarity increase reveals the solvatochromic tendency
of a dye, but also provides information about how zwitterionic or quinoidal the dyes in
the set are. In Figure 5, the solvatochromic inversion of dyes 1 and 6 occurred in the pass
from the gas phase to chloroform solution, which is in agreement with the experimental
observation for 1, which exhibited the solvatochromic inversion in chloroform solution.
However, the solvatochromic inversion for dye 6 occurred in 2-butanol solution, a more
polar medium. It is important to note that the solvation models available for the type of
calculations our protocol requires are implicit solvation models that neglect the specific
solute–solvent interactions (i.e., hydrogen bonds). These solute–solvent interactions indeed
modulate the final solvatochromic response of a dye. Our protocol aims to classify dyes
by predicting their experimental solvatochromism, and in the case of solvatochromically
inverted dyes, predicting this behavior as a pass of the CT values from the quinoidal region
(low part of the plot in Figure 5) to the zwitterionic region (up part of the plot in Figure 5),
regardless of the accuracy of the polarity where this inversion takes place.
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The interplanar angle between the X and Y moieties controls the electronic coupling
between these fragments, modifying the energy required for the charge transfer from
one group to the other [31,39]. A high interplanar angle between the X and Y fragments
will increase the charge separation, increasing the zwitterionic character of the ground
state, ultimately showing the tendency of the dye to display negative solvatochromism.
In this context, dye 9 is a pathological case because it exhibited a well-defined inverted
solvatochromism [32]. Dye 9, whose optimized structures exhibited a high dihedral angle
in the gas phase (ca. 25◦ in the gas phase) and water (ca. 29◦), was wrongly predicted as a
negative solvatochromic dye in our protocol. Regardless of whether the solvatochromism
of dye is an exceptional case, there is a bias in our protocol regarding the solvatochromic
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prediction of dyes presenting high interplanar angles between the X and Y moieties, with
all the molecules X–Y predicted as negative solvatochromic dyes.

The scheme of the influence of solvent polarity on the electronic transition energy
in the dipolar solvatochromic dyes shown in Figure 1 is a model commonly employed
to explain the solvatochromic tendency of the dye. Although the three types of solva-
tochromism exhibited by phenolate-based dyes have been computationally correlated with
their chemical hardness [22], electrophilicity [23,24], and Fukui functions [25], they depart
from the traditional model shown in Figure 1. The protocol we propose in the present work,
in combination with high predictive power, is a computational adaptation of this model.
The CT values are a very straightforward way to calculate the zwitterionic degree of the
ground state of a dye, providing the possibility to extend the ideas the literature has been
using for a long time to understand solvatochromism by a simple computational protocol.
In Figure 6, the application of our model to three dyes exhibiting positive (Figure 6a),
negative (Figure 6b), and inverted solvatochromism (Figure 6c) is illustrated.

Molecules 2022, 27, 9023 10 of 14 
 

 

 
Figure 6. Percentage contribution of the phenolate group in the HOMO and LUMO orbitals for dye 
2 (a), positive), dye 10 (b), negative), and dye 6 (c), inverted). CT values are highlighted in red for 
positive solvatochromism and blue for negative solvatochromism. 

The ground-state structure of all dyes 1−13 was a mixture of XZ−YZ and XQ−YQ, with 
no pure zwitterionic or quinoidal character; therefore, the variation in the Y group contri-
bution to the HOMO and LUMO followed a very similar pattern to the one shown in the 
traditional model of Figure 1. The positive solvatochromic dye 2 exhibited a highly 
quinoidal ground-state structure XQ−YQ in the gas-phase, which slightly decreased with 
the medium polarity. In contrast, the negative solvatochromic dye 10 displayed a highly 
zwitterionic ground-state XZ−YZ in the gas phase, which became even more zwitterionic 
with medium polarity. Finally, the inverted solvatochromic dye 6 started as a mildly 
quinoidal structure XQ−YQ and became moderately zwitterionic XZ−YZ with the increase 
in the solvent polarity. 

3. Materials and Methods 
Molecular geometries of phenolate dyes 1–13 (Figure 3) were optimized at the den-

sity-functional theory (DFT) level with the hybrid functional B3LYP [40] and the 6-31G(d) 
basis set. The solvent effect was mimicked with the polarizable continuum model (PCM) 
[41] for the chloroform (ε = 4.71), dimethyl sulfoxide (ε = 46.83), and water solution (ε = 
78.36). The BLA, BOA, and NTO calculations for representative dyes 1, 2, and 10 were 
obtained using Multiwfn software version 3.8 [42]. 

After optimizing the structures in the gas phase or continuum medium, the mole-
cules X−Y were split into X and Y fragments according to Figure 3. Natural population 
analysis (NPA) of the natural bond orbitals of X−Y dyes, and their fragments X and Y were 
performed with the B3LYP/6-31G(d) method. Geometry optimization and population 
analysis calculations were carried out with the Gaussian09 package [43]. Finally, the 

Figure 6. Percentage contribution of the phenolate group in the HOMO and LUMO orbitals for
dye 2 (a), positive, dye 10 (b), negative, and dye 6 (c), inverted. CT values are highlighted in red for
positive solvatochromism and blue for negative solvatochromism.

The ground-state structure of all dyes 1–13 was a mixture of XZ–YZ and XQ–YQ,
with no pure zwitterionic or quinoidal character; therefore, the variation in the Y group
contribution to the HOMO and LUMO followed a very similar pattern to the one shown
in the traditional model of Figure 1. The positive solvatochromic dye 2 exhibited a highly
quinoidal ground-state structure XQ–YQ in the gas-phase, which slightly decreased with
the medium polarity. In contrast, the negative solvatochromic dye 10 displayed a highly
zwitterionic ground-state XZ–YZ in the gas phase, which became even more zwitterionic
with medium polarity. Finally, the inverted solvatochromic dye 6 started as a mildly
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quinoidal structure XQ–YQ and became moderately zwitterionic XZ–YZ with the increase
in the solvent polarity.

3. Materials and Methods

Molecular geometries of phenolate dyes 1–13 (Figure 3) were optimized at the density-
functional theory (DFT) level with the hybrid functional B3LYP [40] and the 6-31G(d) basis
set. The solvent effect was mimicked with the polarizable continuum model (PCM) [41]
for the chloroform (ε = 4.71), dimethyl sulfoxide (ε = 46.83), and water solution (ε = 78.36).
The BLA, BOA, and NTO calculations for representative dyes 1, 2, and 10 were obtained
using Multiwfn software version 3.8 [42].

After optimizing the structures in the gas phase or continuum medium, the molecules
X–Y were split into X and Y fragments according to Figure 3. Natural population analysis
(NPA) of the natural bond orbitals of X–Y dyes, and their fragments X and Y were per-
formed with the B3LYP/6-31G(d) method. Geometry optimization and population analysis
calculations were carried out with the Gaussian09 package [43]. Finally, the molecular
orbital compositions of the dyes in terms of their constituent chemical fragments X and Y
were calculated with AOMIX software version 6.6 [44].

4. Conclusions

In this work, we report on a novel protocol for the computational prediction of the
solvatochromic tendency of pyridinium-phenolates, the most important family of solva-
tochromic dyes. We applied this protocol to a library of thirteen representative examples
from the literature. Calculating the electronic density contribution of the phenolate group (Y)
to the HOMO and LUMO of the dye makes it possible to estimate whether the ground-
state structure of the dye is quinoidal or zwitterionic. Furthermore, the variation in CT
values with the increase in the medium polarity serves as a computational prediction of
the experimental solvatochromism displayed by pyridinium-phenolates. CT values varied
significantly between dyes 1 and 13, especially when compared to Reichardt’s dye 10,
which has a broader solvatochromic range reported. Despite this observation, a relation-
ship between the dye’s CT value and the experimental HOMO–LUMO gap could not be
established due to the absence of explicit solute–solvent interaction in our calculations. The
continuum solvent model used here allows for the simulation of some solvent-caused dye
polarization, and even if these are the only options affordable at the quantum level, more
is needed to encompass all of the solvent’s polarization effects [45]. Moreover, we have
recently shown that dyes with different forms of solvatochromism are sensitive to different
solvent properties [38].

Another advantage of this method is the possibility of quantifying the degree of
zwitterionic/quinoidal character of a dye, a parameter that can be employed in designing
novel dyes. Unfortunately, there is no easy way to anticipate the type of solvatochromism
based solely on the structure of the dye, and although the vast literature on solvatochromism
is still a black box, where, for instance, the kind of solvatochromism is most of the time
subject to a posteriori verification and rationalization, limiting the design of novel and
better sensors. Our results take a step toward solving this problem by showing that the
difference in the electron density of the phenolate moiety in the frontier molecular orbitals
provides a simple and inexpensive theoretical indicator for solvatochromic predictions.

The results presented here are based on the UV–Vis absorption process of a library
of solvatochromic sensors, an electronic process where the molecular geometry of the
dyes remains the same in the ground, and the excited state in each medium studied.
Nevertheless, the idea of employing the natural population analysis (NPA) of the natural
bond orbitals (NBO) as a method to quantify the charge-separated degree of a state could
be extended to excited state processes, if the molecular geometry of the dye is optimized in
the excited state prior to applying the NPA/NPO analysis. Therefore, the model presented
here could be employed to rationalize solvent-dependent shifts in the emission spectra
of organic molecules [46–51]. Furthermore, the model presented here could be applied
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to determine the dominance of the electron transfer process in excited states, an essential
aspect for developing turn-off sensors based on emissive ligands that discriminate between
analytes [50,51].

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules27249023/s1, a protocol of the %CT calcula-
tion and the fragment percentage of electron densities in the HOMO and LUMO for all dyes as well
as the structure of the dyes used in this work when they are in their quinoidal form.
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