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a b s t r a c t 

The study of protein-peptide interactions is an active research field from an experimental and computational per- 
spective, with the latest presenting challenges to model and simulate the peptides’ intrinsic flexibility. Predicting 
affinities towards protein systems of interest, such as proteases, is crucial to understand the specificity of the 
interactions and support the discovery of novel substrates. Here we provide a set of computational protocols to 
run structural and dynamical analysis of protein-peptide complexes from a binding perspective. The protocols 
are based on state-of-the-art methods, but the code is open and can be customized depending on the user needs. 
These include a fragment-growing peptide docking protocol to predict bound conformations of flexible peptides, 
a protocol to extract descriptors from protein-peptide molecular dynamics trajectories, and a workflow to build 
and test machine learning regression models. As a toy example, we applied the protocols to a serine protease 
structure with a set of known peptide substrates and random sequences to illustrate the use of the code, which is 
publicly available at: https://github.com/rochoa85/Protocols- Peptide- Binding 
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. Introduction 

The spatial arrangement of peptide substrates is important to pre-
ict potential interactions with their molecular targets [1] . The research
n molecular docking of peptides has contributed to overcome, in part,
he challenge of predicting bound conformations of these highly flex-
ble molecular entities [ 2 , 3 ]. In this sense, multiple approaches have
een published to tackle this computational problem [4] . Among them,
ethods using docking strategies where the peptide is grown step-by-

tep can help to solve the flexibility issues, while maintaining the ca-
ability of predicting energy-favorable conformations associated with
otential biological activities [ 5 , 6 ]. These complexes can be sampled
sing techniques such as molecular dynamics (MD), where amino acid
orce field parameters can be implemented to study peptides and their
nteractions [ 7 , 8 ]. Other tools can be useful to predict beforehand the
robable structural conformation of the peptides in comparison to ex-
erimental techniques [ 9 , 10 ]. 

To assess the binding affinity of peptides, multiple strategies have
een proposed to capture their molecular flexibility. These include en-
anced sampling approaches [11] , alchemical free energy perturbations
12] , or techniques able to explore the potential surface energy of the
ystem. Other methods are based on implicit solvent calculation using
olecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) ap-

roaches [13] , with the possibility of adding quantum calculation us-
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ng semi-empirical theories for catalytic residues [14] . In any of these
cenarios, large computational resources are required to reproduce the
inding landscape of peptides as ligands. One option is to use scoring
unctions used in molecular docking to score representative frames of
D trajectories, and calculate thermal averages that can be correlated
ith binding affinities [15] . Another approximation is to use machine

earning methods to predict, from MD trajectories and molecular de-
criptors, any response variable such as affinity proxies [ 16 , 17 ]. 

Nowadays, the combination of physics-based approaches with ma-
hine learning models is useful to reduce the computational cost of run-
ing exhaustive simulations and improve the prediction performance of
lassical methods with available curated data [18] . This is the case of
ovel methods to accelerate quantum chemical calculations using mod-
ls trained with pre-calculated parameters [19] . In the context of MD,
nitiatives are reported to extract descriptors from the trajectories and
ombine them with additional chemical data from the molecular enti-
ies. This is the case of the Molecular Dynamics Fingerprints package
MDFP) [20] , where a set of molecular fingerprints can be computed
y obtaining average energy terms and observables from the MD sim-
lations such as the solvent accessible surface area, dipole moments,
adius of gyration and evolution of the hydrogen bonds. The latest have
een applied to predict free energies of solvation for small molecules
21] , and for binding studies involving proteins [22] . The protocol can
e adapted to include peptides as ligands for virtual screening studies
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iven that a predictive model can be convenient to avoid running ex-
austive simulations. 

In this article, we present a set of open Python scripts to run lo-
ally different computational workflows inspired by published methods
or peptide modeling, such as peptide docking using a fragment-growing
ocking protocol for the prediction of bound peptide conformations, and
 routine to capture descriptors from protein-peptide MD trajectories in
rder to predict observables such as average scoring values. We pro-
ide the open source code to reproduce the main protocols with small
ifferences and without requiring access to web servers. As a toy exam-
le, a library of known substrates and random peptide sequences were
ocked to a granzyme B protease, where each complex was subjected
o short MD simulations. Then, a set of descriptors was calculated per
omplex to generate a regression model able to predict with enough ac-
uracy binding observables. For this example, we show the performance
f some models under certain conditions explained in the Methods, but
uch variables can be changed by the user if a protein target is selected
ith previous knowledge of its binding site, as well as a list of peptide

ubstrates that can be used to extrapolate the results into a novel chemi-
al space using machine learning approaches. Instructions to run exam-
les and install third-party modules required to perform the analysis are
rovided in the repository. 

. Methods 

.1. Customization and system requirements 

The Python 3 scripts are available in the public repository: https:
/github.com/rochoa85/Protocols- Peptide- Binding . The code is pro-
ided under a MIT license for academic and development purposes.
he project is split into three folders. The first one allows running the
ragment-growing docking protocol with a protease receptor as an ex-
mple. The second provides scripts to extract features of protein-peptide
D trajectories with the MDFP package. In addition, the PepFun pro-

ocol is used to calculate descriptors from the peptide sequence and
tructure as explained later in Section 2.5 and Supplementary Table 1.
inally, the third protocol provides a script to configure and run a re-
ression model to predict score/affinity values based on the obtained
escriptors. An example with a protease and a set of peptides evaluated
n this work is included in the code. 

All the classes and functions were written under the Ubuntu 20.04
perating system. Additional third-party tools (see Supplementary Table
) can be installed through the available source code using the latest
ersions, or through Conda virtual environments. 

.2. Fragment-growing docking approach 

As an open source alternative to dock flexible peptides in protein
inding sites, we provide a protocol based on the incremental growth
f a core peptide fragment into the protein binding site, maintaining
 degree of flexibility after new amino acids are added in the peptide
anking regions. The method is inspired in the DINC2 strategy [23] . 

The methodology involves the following steps: (i) Modeling of a 3-
er peptide fragment corresponding to the central section of the peptide

f interest given as input. The loop reconstruction module of Modeller
s used to generate this starter 3-mer fragment from the amino acid se-
uence using the Python modules, which can be easily incorporated into
he docking protocol [24] . The protonation states of the protein and pep-
ide 3D structures are generated using PDB2PQR [25] . (ii) The fragment
s docked in the protein active site using Autodock Vina with standard
arameters [26] . The site is defined based on previous knowledge of
he protein, and it is delimited by a grid search box at the center of the
inding site that increases its size after growing the peptide sequence.
he initial fragment has all their rotational bonds active. (iii) From the

nitial docking, the three best poses (i.e. best Autodock Vina scores) are
sed as starting points to add amino acids at each flanking region of the
2 
eptide. In that way, three solutions are generated from three different
nitial docked conformers. To add the flanking amino acids, the rotamers
re predicted with Modeller using the rest of the structure bound to the
rotein as a template. The bonds of each new amino acid and the amino
cids next to them are kept flexible, while the central part is configured
s rigid based on the docked pose of the previous step. (iv) Finally, the
ew fragments are docked and the best pose per each of the three par-
llel runs is selected to repeat the growing process, until the peptide
eaches its final size. The methodology is intrinsically parallelized by
utodock Vina itself and the multiprocessing module of Python. 

.3. Use case with a protease-peptide system 

A benchmark/validation docking run using our fragment-growing
pproach was performed on the granzyme B protease (PDB id 1iau)
 27 , 28 ]. This is a serine protease from the subfamily S01.010, accord-
ng to the MEROPS database [29] . Multiple peptide substrates have
een reported against this enzyme. A total of 513 8-mer sequences were
elected from the MEROPS database based on filtering experimentally
on-redundant cleaved substrates. To include a set of external peptides
or prediction purposes, 365 random sequences were generated with the
epFun package [30] and docked to the same protease structure. The
equences were generated using the same 8-mer length, with uniformly
istributed amino acids per position, and without conserving dominant
esidues on the peptide cleavage sites. 

To assess the performance of our fragment-growing docking proto-
ol, a set of reported proteases structures bound to peptides with ex-
ended conformations were subjected to re-docking calculations of the
eptides using the following servers: ClusPro [31] , Haddock [32] , HPEP-
ock [33] , MDockPep [34] , CABSDock [35] and DINC2 [23] . To eval-
ate the performance, we compared the predicted peptides with re-
pect to crystal conformations through RMSD calculations over back-
one atoms. The studied complexes have the PDB IDs 1ou8, 2xxn, 3qdz,
tjv and 6di8, and all of them are co-crystallized with peptides from 8
o 15 amino acids in range. The full peptide input conformations for re-
ocking at each server were generated with PEP-FOLD [36] , except for
ABSDock and MDockPep which both generate the peptide structure in-
ut. To complement the assessment, we included a set of 10 additional
rotein-peptide complexes available in the PDB and curated based on
he LEADS-PEP dataset [37] . The peptides selected are also bound in
xtended conformations. The same docking servers were used, and the
MSD evaluation metrics used for the proteases were also calculated. In
ll cases, the binding site residues or binding site grid were specified,
epending on web server requirements. 

.4. MD simulations 

Each granzyme B-peptide complex docked with our protocol was
ubjected to MD simulations using Gromacs version 5.1.4 [38] . The
mber99SB-ILDN protein force-field [39] , a TIP3P water model [40] ,
 modified Berendsen thermostat [41] , and a Parrinello-Rahman baro-
tat [42] were used during the equilibration and production phases. The
omplex was solvated in a cubic box of water with periodic boundaries
t a distance of at least 8 Å from any atom of the protein. Counterions of
a + and Cl − were included in the solvent to make the box neutral. The
lectrostatic interactions were calculated using the Particle Mesh Ewald
PME) method, with 1.0 nm short-range electrostatic and van der Waals
utoffs [43] . The equations of motion were solved with the leap-frog
ntegrator [44] , using a timestep of 2 femtoseconds (fs). 

The equilibration consisted of 100 picoseconds (ps) of NVT ensem-
le, followed by 100 ps of NPT. Then a production NPT simulation was
un during 10 ns. With the trajectories, a MD/scoring approach was
mplemented to calculate average scores using all the frames from the
rajectories. Specifically, for each MD simulation, an interaction score
as attributed: each frame was scored using the Autodock Vina scor-

ng function (the same used in the fragment-growing docking protocol)

https://github.com/rochoa85/Protocols-Peptide-Binding
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Table 1 

Protease-peptide (in gray) and LEADS-PEP protein-peptide com- 
plexes selected from the PDB to assess the fragment-growing pep- 
tide docking approach. 

PDB id Peptide sequence Protocol RMSD ( ̊A) 

1ou8 GRHGAANDENY 3.2 
2xxn SVWIPVNEGASTSGM 4.8 
3qdz TPSILPAPR 4.1 
3tjv PTSYAGDDS 2.7 
6di8 CGVPAIQPVLSGL 3.9 
1elw GPTIEEVD 2.4 
1ntv NFDNPVYRKT 2.9 
2b9h RRNLKGLNLNLH 3.6 
2w0z APPPRPPKP 2.2 
2w10 PPPRPTAPKPLL 3.4 
2xfx VGYPKVKEEML 4.2 
3ch8 PQPVDSWV 2.2 
3obq PTPSAPVPL 4.1 
4btb PPPPPPPPP 2.0 
4eik SLARRPLPPLP 3.5 
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nd the average value across all frames from the trajectory was stored,
nd used at later stages, for the generation of a regression model able
o predict the same variable for novel peptide sequences. 

.5. Descriptors extraction 

Based on the granzyme B-peptide MD trajectories performed with
romacs, the MDFP tools libraries [20] were adapted and used to ex-

ract a set of protein-peptide MD-derived descriptors ( https://github.
om/rinikerlab/mdfptools/ ). Each descriptor is split into three positions
vector), which include the average, median and standard deviation
alue of the calculated property among the MD frames. To achieve this,
he calculated MD trajectory is re-run with Gromacs to add new energy
erms in the outputs per frame. These include the Coulomb and Lennard-
ones energy contributions between the peptide, the receptor and the
ater molecules. Other included descriptors are the SASA and radius
f gyration, the charges calculated with the ParmEd module [45] , the
ipole moments and evolution of hydrogen bonds with the MDtraj mod-
le [46] , and bioinformatics properties of the peptide using the PepFun
ackage. A total of 70 descriptors per complex were calculated. The full
ist is available in the Supplementary Table S1. 

Two scripts, one using bash command lines, and a second written
n Python are included in the main code to extract these descriptors.
he vectors per complex are stored as pickled objects in a folder, which
an be read later by machine learning models. An example of a protein-
eptide MD trajectory is provided in the code repository to reproduce
he results. 

.6. Machine learning model setup and test 

Finally, to test the prediction performance of the average score ob-
ained from the MD frames, two regression models were configured us-
ng the granzyme B system. The models are a basic linear regression
odel, and a gradient boosting regressor with 500 estimators and a

earning rate of 0.01. Both models are prepared using the scikit-learn
odule in Python [47] . For the initial training validation, the set of 513
eptide substrates were split in a 75/25 schema (i.e. 75% of the pep-
ides to train, and 25% to test). This was performed using a maximum
hemical diversity function, where both the training and test set con-
ains the maximum number of diverse compounds to avoid biasing both
hemical spaces. The chemical similarity is quantified using the ECFP4
animoto coefficient [48] , and the diverse subset are selected using the
axMin algorithm in the RDKit. The R2 coefficient of determination and

he Mean Squared Error (MSE) were calculated to assess the models. In
he case of the gradient boosting regression model, the deviance of both
raining and test sets, as well as the feature and permutation importance
ere analyzed. 

After the initial assessment, a final model was trained with the 513
eptide substrates, and applied using the 365 random sequences. The
ame R2 and MSE metrics were calculated to validate the model. A
cript to configure and run the predictions with the protease-peptide
rajectories is also provided within the code. For this example, we add
he average scores as a pre-calculated variable per peptide to be used
s the model output. However, the users have the option to select as
esponse any proxy affinity value, mostly motivated in the cases where
unning such calculations require demanding computational times and
esources. 

. Results and discussion 

The three protocols covering peptide docking and scoring analysis
ere applied using a protease (granzyme B) system as an example. In

he next section, we discuss their implementation and provide insights
bout their use for other applications. 
3 
.1. Peptide docking protocol 

The docking of highly flexible molecules is an active research area
ith different software available for that purpose. This includes pack-
ges such as FlexPepDock [49] , GalaxyPepDock [50] , and DynaDock
2] , which use different computational strategies and scoring functions
o predict refined protein-peptide complexes. However, most of these
ethods are available as public web servers where the code is not avail-

ble, or as part of open pipelines demanding previous exhaustive analy-
is of the initial template, limiting their usability. In our case, the dock-
ng protocol implements open source software to dock peptides in a pro-
ein binding site, dealing with the intrinsic flexibility of the peptide,
nd allowing the customization of the protocol in case the user wants
o modify not only parameters but substantial parts of the protocol. The
orkflow we propose is summarized in Fig. 1 . 

One goal of the protocol is to include the flexibility of the molecule,
n this case the peptide, but gradually after each iteration. The internal
otational bonds of the peptide are configured first as flexible, but af-
er growing the flanking regions the best conformations of the previous
teps are kept rigid to diminish the computational time, allowing the
ew fragments to explore the best pose based on the rigid selected tem-
late, and the flexible new flanking amino acids. The protocol has ben-
fited from the multithreading architecture available in Autodock Vina
nd auxiliary programs to model additional amino acids in the peptide,
rotonate according to the system requirements, and tailor the peptide
ased on the known binding site and biological background available. 

To validate the protocol performance for proteases, we selected first
 dataset of five protease-peptide complexes available in the PDB. The
eptides were selected by taking into account full peptide substrates
onger than 8 amino acids belonging to different families and with loop
tructures. One advantage is the availability of crystallized bound con-
ormations to compare the docking results through RMSD values. We
lso performed the docking using alternative protocols for peptide dock-
ng (see Methods). In addition, we followed a similar docking analysis
nd RMSD calculation using a set of 10 protein-peptide complexes avail-
ble in the LEADS-PEP dataset. A summary of the peptide RMSD for our
ragment-growing protocol is provided in Table 1 . 

We found that our protocol predicts peptide conformations with
MSD values below 5 Å for the proteases included in the benchmark-

ng, and a similar performance was found with the additional protein-
eptide complexes reported in the LEADS-PEP dataset. In general, re-
roducing flexible backbone conformations is a subject of research that
an be complemented with sampling of the conformational space using
D and other techniques, which is the case of our pipeline. Other alter-

atives to perform peptide docking presented similar, and in some cases

https://github.com/rinikerlab/mdfptools/
pdb:1ou8
pdb:2xxn
pdb:3qdz
pdb:3tjv
pdb:6di8
pdb:1elw
pdb:1ntv
pdb:2b9h
pdb:2w0z
pdb:2w10
pdb:2xfx
pdb:3ch8
pdb:3obq
pdb:4btb
pdb:4eik
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Fig. 1. Workflow of the protein-peptide fragment-growing docking protocol. (A) The protocol highlights the selection of the initial fragment, the docking, and the 
iterative expansion of the structure through the addition of amino acids in the flanking regions. The pipeline uses three starting docked fragments to grow the 
sequence in parallel. The best scored final complex can be used for further sampling steps. The blue section describes the expansion steps, the green section the 
docking and ranking, and the orange section the protocol output. (B) Example of a peptide fragment and how it is expanded through the flanking regions. (C) 
Snapshots of the evolution of a peptide subjected to the fragment-growing docking protocol. The initial fragment (in green) is grown by single amino acids at each 
flanking part of the peptide (in yellow). After each step, the docked part remains rigid, and the new additions are configured as flexible. The snapshots represent the 
growing steps of the docking protocol until completing the full bound peptide. 
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etter results, but with the disadvantage of being accessed only through
eb servers, and limiting batch jobs for large peptide binders datasets.
mong the external programs, it is important to mention that ClusPro
nd Haddock are rigid body docking approaches where the results de-
end on the peptide initial conformation. It means that the output will
e affected if the structure of the input is very different from that of
he crystallographic structure. Unlike the two previous cases, HPEPDock
nd DINC2 allow implicit flexibility in the peptide structure through en-
emble docking or by fragment-based docking respectively, increasing
he chances to find optimal conformations. MDockPep and CABSDock
an model and dock the structure of the peptide from its sequence. 

The docking protocol provided in our scripts is inspired by the DINC2
ethodology [23] , with differences around the parallelization of the

ode, the selection of candidates, and the requirement of peptide frag-
ents as input files, which are modelled within our protocol. In the case

f DINC2, more parallel runs are generated to select the candidates from
 group of solutions. In our case, we provide three final protein-peptide
omplexes that can be filtered based on the predicted score or confor-
ational pose. The number of runs can be changed by the user in the

ode. In terms of the assessment performance, one of the limitations is
ssociated with the size of the peptide, as in our case. Specifically, the
arger the size the greater the conformational freedom, as can be ap-
reciated for larger peptides with higher RMSD values in Table 1 . The
MSD for the external peptide docking servers are reported in Supple-
entary Table S3. 
4 
Differences in predictions can be related with the peptide initial con-
ormation. In our docking protocol, the peptide input conformer is pre-
icted, or a crystallized fragment from a structural complex can be used
irectly to grow the full peptide sequence. On the other hand, the in-
uts used for the servers were generated with PEP-FOLD. In spite of not
ccurately reproducing the crystal structures, our method can be used
o screen massive amounts of ligands that can be refined as proposed.
n addition, we compared the computational efficiency of our protocol
gainst Autodock Vina itself, using one protein-peptide system as ref-
rence (PDB id 1bx2). We found that our method can run the docking
n half of the time required by Vina with 24 CPU cores, and the final
ocking pose was less accurate with regard to the crystal structure when
ina was used alone (see Supplementary Fig. S1). 

For the granzyme B system, we docked the 878 peptides at the crys-
al binding site, where 513 are known substrates and the remaining 365
re the random sequences generated with PepFun. After docking all the
ubstrates and random peptide sequences to the granzyme B system,
e followed a pipeline where each complex is subjected to MD simula-

ions and a set of descriptors are extracted to build a predictive machine
earning model ( Fig. 2 A). The latest is important because it is difficult to
xplore the conformational space using classic docking protocols. This
an be overcomed by refining or sampling the complexes using MD,
etropolis Monte Carlo, among other sampling techniques. Our pro-

ocol generates short trajectories of the systems with MD equilibrium
imulations of 10 ns, which is a suitable time for massive virtual screen-
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Fig. 2. Granzyme B system used as toy example to test the proposed protocols. (A) Representation of the protease structure and general pipeline followed during the 
application. (B) Overlapping of MD snapshots obtained after 10 ns simulations. (C) Example of the score average for one protease-peptide trajectory. The continuous 
line is the cumulative average. 
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ng campaigns in order to increase conformational variability within the
ame minima found during the fitting process ( Fig. 2 B), and therefore
tatistically improve the predicted score by scoring each frame and av-
raging it as a proxy affinity response ( Fig. 2 C). 

.2. Model descriptors 

From the MD simulations for all the 878 peptides (513 substrates and
65 random sequences), 70 previously described descriptors (see Meth-
ds) were calculated for the machine learning (ML) setup and selected as
ndependent variables. The average Autodock Vina score obtained from
he MD simulations for each protein-peptide complex was selected as the
ependent variable to be predicted in the regression model. This com-
ined MD/scoring approach has been implemented in the past to filter
andidates that agree with experimental data [ 51 , 52 ]. However, users
an run more exhaustive free energy calculations to predict the affini-
ies or to include experimental values if these are available, in order
o justify the setup of a regression model able to predict energies using
olely basic MD simulations. This reduces the required computational
esources and provides a hybrid MD/ML approach that can be more ef-
cient for massive analysis such as protease novel substrate recognition
53] . 
5 
The example provided is an illustrative case where capturing infor-
ation from MD simulations can allow the reduction of prospective

imulation time by preparing a model able to predict a particular MD-
elated observable. It means that information from MD trajectories can
e captured in an ML model trained with MD-based descriptors, or if an
xperimental value is available, a descriptive model can be generated
nd complemented using the same MD-based descriptors. To visualize
ow these 70 descriptors are distributed among the included sequences,
istograms of some properties are shown in Supplementary Fig. S2. We
lso plotted the distribution of the average scores to assess the variabil-
ty of the metric to be predicted in the example, which is suitable for
he machine learning application (Supplementary Fig. S3). A summary
f the suggested model is shown in Fig. 3 . 

.3. Machine learning model performance 

As a toy example, we provide a simple analysis of training and testing
 regression model using the descriptors calculated in the previous step.
he goal is to illustrate one way to run the analysis, but the user has the
ption to customize the protocols based on the system and data available
o build their own models. 

For this application and based on the defined set of descriptors, we
rained two regression models using the 513 peptide substrates as the
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Fig. 3. Overall machine learning strategy. This includes the definition of training and test datasets based on sampled substrates and random docked peptides. The 
MD simulations and the peptide intrinsic properties are used to extract a set of descriptors to use them as input in predictive regression models. 
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Table 2 

Regression performances for the gradient boosting regressor and 
the linear regression model trained with the peptide substrates and 
tested with the random peptides. The metrics are associated with 
the predictions using the test set. 

Metrics Gradient boosting Linear regression 

Mean Squared Error (MSE) 0.195 0.075 
Pearson correlation 0.877 0.947 
R 2 0.721 0.892 

a  

a  

o  

i

raining set, and the 365 random peptides as the test set. However, with
he 513 peptides we did a 75/25 training/test schema using a maximal
hemically diversity analysis with the included peptides (see Methods).
he main regression metrics for this analysis is provided in the Supple-
entary Table S4. The results for the final training and test using the

verage score as the output variable is shown in Table 2 . 
In general, we observed a better performance of the linear regression

odel. However, in both cases the performances were acceptable with
2 values over 0.7. In particular, the gradient boosting technique al-

owed us to visualize per iteration the deviance of the results, and check
hich features are contributing the most to the predictions ( Fig. 4 ). 

Regarding the features, the most relevant are those derived from
he protease-peptide energy terms, including the Coulomb and Lennard-
onnes average and median descriptors. Some ligand-based features are
lso highlighted such as the number of rotatable bonds, which is an in-
icator of the peptide flexibility. An additional permutation importance
6 
nalysis was performed with similar results about the most relevant vari-
bles (Supplementary Fig. S4). The protocol to reproduce the training
f both models, as well as generate the gradient boosting related figures
s available within the code repository. 
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Fig. 4. Gradient boosting regression model deviance and feature importance. (A) Deviance evolution of the model with the training set deviance in blue and the test 
set deviance in red. (B) Feature importance with the top 5 features of the model mentioned in the red square. 

3

 

t  

r  

t  

i  

t  

t  

m
 

m  

b  

s  

c  

b  

t  

l  

A  

i  

b  

p  

e  

a
 

b  

r

4

 

u  

b  

t  

o  

a  

a  

a  

b  

s  

D

 

c  

P

D

 

i  

t

A

 

t  

M  

P

S

 

t

R

 

 

 

 

 

 

 

.4. Technical considerations 

The protocols were designed under the Ubuntu 20.04 operating sys-
em. However, the project can be installed in any Conda virtual envi-
onment with the required dependencies. In the case of the docking pro-
ocol, it depends on calls to bash commands that were originally tested
n a Linux environment. All the workflows depend on the addition of
hird-party tools, which are also open source, but will require building
he source code in the local machine where the project will be imple-
ented. 

The docking method we provide is a supervised approach, initially
otivated by a local project to dock epitopes into the MHC class II

inding site [54] . This means that instead of providing a blind docking
trategy where the binding site is undetermined, the user is required to
ustomize the process based on previous knowledge of the protein and
inding site, in order to focus the analysis on managing the peptide in-
rinsic flexibility and reproducing plausible bound conformations. To al-
ow this, a grid search space should be assigned based on a required size.
 set of known binding site coordinates must be provided to dock the

nitial peptide fragment, which can affect the starting point to grow the
ound peptide structure. We recommend that if a crystallized protein-
eptide complex exists, a tripeptide obtained directly from the refer-
nce complex should be considered for the fragment-growing docking
pproach, to improve the results. 

Finally, we suggest the parameters for running the MD simulations,
ut the user can configure them based on their own necessities. The only
equirement is to use Gromacs for the calculations. 

. Conclusion 

The computational study of how peptides interact with other molec-
lar entities is crucial to accelerate the design of novel sequences with
etter properties, including their affinities. In this work, we provide
hree open protocols that can be implemented to any protein-peptide
f interest but exemplified in the context of a granzyme B system with
vailable biological and structural knowledge. The protocols allow the
nalysis of massive peptide substrates through fragment-based docking
7 
nd MD sampling and scoring of the molecules. The code is open and can
e modified to fit the user necessities, add new types of predictions and
imulations, and automatize the pipeline for virtual screening purposes.
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