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Abstract: Accurate rainfall measurement is a challenge, especially in regions with diverse climates
and complex topography. Thus, knowledge of precipitation patterns requires observational networks
with a very high spatial and temporal resolution, which is very difficult to construct in remote
areas with complex geological features such as desert areas and mountains, particularly in countries
with high topographical variability such as Chile. This study evaluated the performance of the
near-real-time Integrated Multi-satellite Retrievals for GPM (IMERG) Early product throughout Chile,
a country located in South America between 16◦S–66◦S latitude. The accuracy of the IMERG Early
was assessed at different special and temporal scales from 2015 to 2020. Relative Bias (PBIAS), Mean
Absolute Error (MAE), and Root-Mean-Squared Error (RMSE) were used to quantify the errors in the
satellite estimates, while the Probability of Detection (POD), False Alarm Ratio (FAR), and Critical
Success Index (CSI) were used to evaluate product detection accuracy. In addition, the consistency
between the satellite estimates and the ground observations was assessed using the Correlation
Coefficient (CC). The spatial results show that the IMERG Early had the best performance over
the central zone, while the best temporal performance was detected for the yearly precipitation
dataset. In addition, as latitude increases, so do errors. Also, the satellite product tends to slightly
overestimate the precipitation throughout the country. The results of this study could contribute
towards the improvement of the IMERG algorithms and open research opportunities in areas with
high latitudes, such as Chile.

Keywords: GPM; IMERG Early; precipitation remote sensing; Chile

1. Introduction

Precipitation is a vital resource of the hydrological cycle [1,2]. Excessive rainfall
can lead to a decrease in water quality, which is detrimental to both human health and
ecosystem well-being [3,4]. Precipitation measurement is therefore essential for weather
forecasting [5]. Rain gauges provide a point measurement that may be used in situations
where it is necessary to determine how precipitation is distributed globally [6,7]. However,
ground-based measurements are insufficient to cover the spatial and temporal variability
of rainfall due to operational and maintenance costs [8–10].

Sectors such as agriculture, hydrology, weather monitoring, numerical forecasting, and
climate studies are greatly interested in knowledge of precipitation’s spatial and temporal
distribution. At this point, we need to go beyond rain gauges for other measuring devices.
Radars used to monitor the weather are useful tools for determining how precipitation is
distributed throughout their respective coverage areas. Also, satellite precipitation products
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provide worldwide coverage and several studies in the field have proved their contribution
to science. The development of meteorological satellites in the 1970s made it possible to
observe clouds in a hemispheric context. This observation provided the possibility to carry
out scientific research in order to advance multiple techniques for detecting meteorological
variables remotely.

Remarkably, scientific development to estimate precipitation from radiometric satel-
lites is an ongoing challenge. Among the most widely recognized and currently used pre-
cipitation estimates is the Climate Prediction Center Morphing Method (CMORPH) [11–13].
A very popular satellite product devoted to measuring moderate to high rainfall is Multi-
Satellite Precipitation Analysis (TMPA, known as 3B42) [14–16]. In addition, other popular
precipitation products are widely used, such as Hydroestimator (HYDRO) [16], Precipita-
tion Estimation from Remotely Sensed Information using artificial neural networks (PER-
SIANN) [17,18], and the new satellite Global Precipitation Measurement (GPM) [10,19,20].

The GPM project is a scientific endeavor that aims to study physics and spatiotemporal
variability of the Earth’s global precipitation as an essential component of the planet’s mete-
orological, climatological, and hydrological systems [5]. Improved coverage (60◦N–60◦S) as
well as spatial (0.1◦ × 0.1◦) and temporal (30 min.) resolution were all part of the Integrated
Multi-satellite Retrievals from GPM (IMERG), in the GPM satellite’s mission launch on
27 February 2014. IMERG has three near-real-time rainfall products: Final, Early, and
Late [19]. IMERG products have performed well in precipitation research worldwide [20].
For example, in Saudi Arabia, they showed a high correlation between the satellite esti-
mates and the gauge measurements at daily rainfall resolution [19]. However, they showed
a moderate correlation performance in Iran [21]. Other studies evaluated the different
IMERG products in Iran [22], Finland [10], Greece [23], South America [24], Brazil [25–27],
Saudi Arabia [19,28,29], Indonesia [30], Ecuador [31], Pakistan [32] and Chile [15,20,33].

Estimating rainfall in mountainous areas is a challenge, due to the difficulty of estab-
lishing a good rainfall station coverage in these areas [28]. Some research has focused on
the argument of rainfall coverage versus remote sensing performance in these areas, such
as in the Tropical Andes [34], mountainous areas (the Pyrenees) [35], western Alps [36],
and Saudi Arabia [32]. These researchers have shown the problems of precipitation detec-
tion [34,35] increasing errors in areas exceeding 2000 m elevation [28]. In South America,
given the complex topography associated with the Andes Mountains, areas with a signifi-
cant presence of surface snow and strong spatial contrasts as well as changing precipitation
regimes, the uncertainties of IMERG products need to be estimated. Based on research
articles, there are uncertainties associated with the satellite estimates, which could be due
to factors affecting rainfall estimation, such as the area’s hydroclimatic characteristics. In
addition to topography, the season of the year influences satellite estimates, reported to
result in overestimation or underestimation in most mountainous areas [34–36]. Other
potential sources of uncertainty include the scale dependency and the extensive interaction
between the dynamics of air circulation and the microphysics of clouds [20]. Because
mountainous terrain is often rough and difficult to reach due to its very nature, the use of
rain gauges and other remote sensing technologies is frequently constrained by the terrain’s
characteristics. In many cases, the alternative brings together both of these methodologies,
a combination of ground and remote sensing data [29].

In the example of south-central Chile, total rainfall from rain gauges revealed a correla-
tion of 0.66 spatially, between the IMERG Late product and measurements. However, there
was a considerable underestimation of rainfall estimated by the satellite identified across
the Andes and coastal mountain areas lying at 36.5 degrees south, while the performance
was better for northern and valley areas [20]. For the severe event that took place from
28–31 January 2021, Junqueira et al. [25] showed that a correlation of 0.73 was achieved
between the gridded IMERG Final product estimates and the gauge measurements. On
the other hand, Soto Alvarez et al. [15] analyzed the performance of IMERG Late and Final
products for four different macro zones around Chile. No study has been done on the
regional and temporal performance of the IMERG Early product over Chile, nor on its
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effectiveness in detecting precipitation events across the nation. This is also true of its
performance in determining whether major events had taken place. Before putting them
to use in any kind of hydrological application, a more comprehensive examination is still
required for a better understanding of IMERG product variations, especially in regions
with high topographical and climatic variations, such as Chile.

The motivation for this study is therefore:

• The possibility of using these products as a complement or substitute for ungauged
and poorly gauged regions;

• A lack of real-time data that can be used for early-warning systems;
• A lack of studies examining the performance of the IMERG Early product in a country

or region with a high precipitation variability, such as Chile.

As a result, the primary purpose of this research was to assess the reliability of the
IMERG Early product compared to the precipitation data collected from the ground across
Chile. This paper’s structure is as follows: The research area, data gathering, processing,
and statistical measure definitions are all introduced in Section 2. The findings of the
study are presented and discussed in Section 3, along with the limitations of the research,
including different levels (spatial and temporal). This investigation comes to a close in
Section 4, which also contains a conclusion.

2. Datasets and Methodology
2.1. Study Area

Continental Chile is located between 16◦ and 66◦ south latitude. Its diversity is due to
its vast latitudinal distances (Figure 1a,b). The region has areas with complex topography
associated with the Andes Mountains, areas with a significant presence of surface snow
and strong spatial contrasts, and low or intense precipitation regimes. It ranges from
hyper-arid regions in the north to rainy climates in the extreme south, passing through a
climatic transition zone with dry summers and wet winters, whose duration and amount
of rainfall increase from north to south. According to the Köppen-Geiger Classification [37],
the territory presents five climates: Desert, Mediterranean, Semiarid, Temperate, and
Glacial. The arid north occurs from the extreme north, 17.5◦S to 30◦S, where annual rainfall
is around 100 mm. From this latitude, rainfall increases southward, and the wet season
increases in duration until at 42◦S, with more than 2500 mm per year. It is no longer possible
to define a dry summer (Figure 1a). Further south, rainfall continues to increase, reaching
up to 5000 mm per year in the insular regions of Aysén and Magallanes. In the altiplano
(from 3500 m above sea level), a summer rainfall regime develops, with a maximum of
about 400 mm per year. It decreases southward along the peaks until it disappears around
28◦S. Rainfall in the central transition region is concentrated in the coldest months. The
mountain ranges also affect rainfall distribution; when driven by the wind, the clouds
loaded with moisture hit the windward slope, producing heavy rains in this region.

Chile is administratively divided into 16 regions, namely (i) Arica-Parinacota,
(ii) Tarapacá, (iii) Antofagasta, (iv) Atacama, (v) Coquimbo, (vi) Valparaíso, (vii) Metropoli-
tana de Santiago, (viii) O’Higgins, (ix) Maule, (x) Ñuble, (xi) Biobío, (xii) Araucanía, (xiii)
Los Ríos, (xiv) Los Lagos, (xv) Aysén, and (xvi) Magallanes (see Figure 1a,b and Table 1).
These regions were formed based on (https://www.bcentral.cl/ accessed on 17 January 2022).

https://www.bcentral.cl/


Remote Sens. 2023, 15, 573 4 of 17
Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 19 
 

 

  

Figure 1. (a) Map of Köppen-Geiger climate classifications by color (based on temperature and pre-

cipitation), including political and administrative distribution, (b) location of rainfall gauge stations 

across Chilean territory, and (c) elevation over Chile. The elevation and distribution of the region 

were created using an ArcGIS analysis of a shapefile. The shapefiles of Chile and profile elevation 

were obtained from IDE, https://www.ide.cl/ [38]. 

Table 1. Administrative regions and their rain gauge station. 

Administrative 

Region 
Number of Stations Density per Km Annual Precipitation 

Antofagasta 38 0.0003 100 

Araucania 55 0.0017 3000 

Arica y Parinacota 27 0.0016 3 

Atacama 28 0.0004 250 

Aysén 39 0.0004 4266 

Biobío 40 0.0017 2000 

Coquimbo 65 0.0016 130 

Los Lagos 29 0.0006 3514 

Los Rios 23 0.0013 3056 

Magallanes 66 0.0005 3500 

Maule 55 0.0018 792 

Metropolitana (RM) 

de Santiago 
43 0.0028 356 

Ñ uble 28 0.0021 1500 

O’Higgins 30 0.0018 739 

Tarapacá 23 0.0005 8 

Commented [M3]: Please check if the copyright 

permission is needed for this Figure. If so, please 

provide it. 

Commented [lg4R3]: The IDE, the Chilean 

Institute of Ge54ospatial Data Infrastructure, is a 

network of public institutions that works in a 

coordinated and collaborative manner with the 

objective of making available to the entire 

community, updated and reliable geospatial 

information that is useful for public and private 

management, also meeting the needs of citizens. 

Offering a collection of links to layers and images 

categorized by ISO themes. This is the result of the 

SNIT Executive Secretariat's search for territorial 

information layers in institutional websites. 

Figure 1. (a) Map of Köppen-Geiger climate classifications by color (based on temperature and
precipitation), including political and administrative distribution, (b) location of rainfall gauge
stations across Chilean territory, and (c) elevation over Chile. The elevation and distribution of the
region were created using an ArcGIS analysis of a shapefile. The shapefiles of Chile and profile
elevation were obtained from IDE, https://www.ide.cl/ (accessed on 4 December 2022) [38].

Table 1. Administrative regions and their rain gauge station.

Administrative
Region Number of Stations Density per Km Annual Precipitation

Antofagasta 38 0.0003 100
Araucania 55 0.0017 3000

Arica y Parinacota 27 0.0016 3
Atacama 28 0.0004 250

Aysén 39 0.0004 4266
Biobío 40 0.0017 2000

Coquimbo 65 0.0016 130
Los Lagos 29 0.0006 3514
Los Rios 23 0.0013 3056

Magallanes 66 0.0005 3500
Maule 55 0.0018 792

Metropolitana (RM)
de Santiago 43 0.0028 356

Ñuble 28 0.0021 1500
O’Higgins 30 0.0018 739
Tarapacá 23 0.0005 8

Valparaíso 62 0.0038 450

2.2. Data Collection and Processing
2.2.1. Rain Gauge and IMERG Data

Rain gauge data, spanning from 1 January 2015 to 31 December 2020, were downloaded
from the Dirección General de Aguas (DGA, https://snia.mop.gob.cl/, accessed on 19 January
2022). In this study, a total of 651 rain gauge stations were included and assessed. The stations
cover all regions of Chile, as shown in Figure 1b. The following table shows the number of
rain gauge stations per region, their density, and the mean annual precipitation.

https://www.ide.cl/
https://snia.mop.gob.cl/
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Daily records, altitude, and ID were collected for 651 rain gauge stations to evaluate
rainfall. The station ID provided by the DGA was used to identify the region and a number
that refers to the sequence in the database list. A quality check of the daily records data
was carried out following Scherrer, S.C. et al. and Estévez, J. et al. [39,40] to detect possible
random alterations in the time series. GPM Mission Remote Sensing data were downloaded
from NASA (https://gpm.nasa.gov/, accessed on 25 January 2022). The IMERG Early
product was the focus of this study and was evaluated from 2015 to 2020 (6 years). This
product presents near real-time precipitation records at 0.1◦ × 0.1◦ resolution every 30 min,
totaling 17,520 annual files (17,568 for a leap year).

2.2.2. Data Analysis

To obtain the IMERG precipitation estimates that match the ground measurements, a
methodology was adopted from Mahmoud, M.T. et al. [10] which considers the precipita-
tion value within the position of the cell representing the IMERG Early product intersection
point against the location coordinates of the precipitation station.

The IMERG Early is provided in an RT-H5 file format, where RT refers to real-time
and H5 is an HDF5 file. Following the methodology of Mahmoud, M.T. et al. [19], the
precipitation data were extracted just for the country of Chile and converted into an
ASCII format. The spatial resolution of the IMERG Early product is 0.1◦ longitude × 0.1◦

latitude. Figure 2 shows the coordinate matching process. The matching process of the
coordinates and IMERG Early product files were scripted in MATLAB software following
the methodology introduced by previous articles [19,29]. The main steps of the code are:
(1) search each rainfall record during each event for the latitude and longitude written
in cell position format and ID; (2) read the selected IMERG Early product file and scan
the precipitation value within the cell position that represents the GPM intersection point
with the location coordinates of the rainfall station; (3) collect the nearest intersection
point when that intersection point is located above the quadrilateral of length 0.1◦ × 0.1◦

(approximately 11 × 11 km); and (4) compare rainfall measurements from the specified
rainfall station and the selected IMERG Early product intersection. A total of 2192 data files
were preprocessed.
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Figure 2. Coordinate Matching as illustrated in Mahmoud, M.T. et al. [10].

2.3. Data Evaluation-Validation Process

Radars cannot be used to directly measure precipitation. Rather, rainfall is calculated
based on the amounts measured. Since it is an estimate, it must be validated or checked to
ensure its accuracy [10]. Therefore, we require observations from rain gauges so we can
evaluate the accuracy of weather radars against satellite rainfall estimates. The IMERG
Early product and ground-based precipitation data were put through their paces through-
out the validation procedure, which consisted of measuring their performance using six
different statistics. These methodologies are further broken down into three categories,

https://gpm.nasa.gov/
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which all apply to different purposes. The first group consists of the mean absolute error
(MAE), the root mean squared error (RMSE), and the relative bias (PBIAS) and is used
to characterize the biases and inaccuracies that are present within the satellite data when
compared to the rain gauge data (Equations (1)–(3)). The second group looks at whether
or not the data from the rain gauge and the satellite estimations match up consistently
via the use of the correlation coefficient (CC) (Equation (4)). The third group explains the
uncertainty surrounding the satellite estimations using three statistical parameters: the false
alarm ratio (FAR), the probability of detection (POD), and the critical success index (CSI)
(Equations (5)–(7)). All statistical results are shown by boxplot and maps. These metrics
are defined as:

MAE =
1
n ∑n

i=1| Si − Gi| (1)

RMSE =

√
1
n ∑n

i=1(Si − Gi) (2)

PBIAS =
1
n ∑n

i=1(Si − Gi)

∑n
i=1 Gi

(3)

CC =
1
n ∑n

i=1(Si − S)(Gi − G)

σSσG
(4)

FAR =
Ps

Ps + PSG
(5)

POD =
PSG

PSG + PG
(6)

CSI =
PSG

PSG + PS + PG
(7)

3. Results and Discussion

The IMERG Early product accuracy results are presented for the 651 stations evaluated
in the Chilean territory. The statistical results are presented in two analyses: spatial
and temporal. The topography was also evaluated, including these results in the spatial
evaluation session. Some limitations and future remarks are subsequently mentioned.

3.1. Spatial Analysis
3.1.1. Satellite Detection Accuracy

Figure 3 shows the spatial performance for the IMERG Early product using the POD,
FAR, and CSI metrics over Chile. The POD, FAR, and CSI indices show that the IMERG
Early product performed well in detecting precipitation from the O’Higgins region to
the south. The Coquimbo region and the southern regions of Chile showed the highest
detection accuracy, with a POD close to 1. On the other hand, the northern regions, mainly
the regions of Antofagasta and Atacama, showed low detection accuracy, highlighting
the Atacama Desert area for the IMERG Early product. The Rub’ al-Khali desert in Saudi
Arabia has previously shown low POD and CSI values, demonstrating the satellite’s low
performance over the desert [19].

In addition, the FAR was calculated to evaluate the false detection from the IMERG
Early product. The first seven regions, from Arica and Parinacota to RM de Santiago,
presented FAR and CSI values between 0.50–0.90 and 0.00–0.60, respectively, showing poor
detections for these regions. Interestingly, there was a gradual reduction of false alarms
towards the south, which was consistent with the POD indicator. The FAR results over the
Ñuble, Biobío, Araucanía, Los Ríos, and part of the Los Lagos regions showed a decrease,
while the CSI values were relatively high. In addition, we could notice that some areas
such as the Aysén and Magallanes regions present FAR and CSI values similar to those of
the central region. This could be due to the low frequency of pluviometry stations.
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On the other hand, climatic differences dictate different precipitation regimes. It is notable
that there are climatic transition zones throughout the country (see Figure 1a), which have
their own characteristics, making it difficult for some precipitation detection [41]. However,
Figure 3 shows an improvement in satellite precipitation detection accuracy in Mediterranean
and temperate climates (see Figure 1a). Surprisingly reliable values were found for the POD
and CSI performance indicators up to 58◦ S latitude. Similar results have been shown by
Mahmoud et al. [10] for high latitudes in Finland using the Early product.

3.1.2. Satellite Error

Boxplots provide the analysis with the degree of dispersion, symmetry, and number
of outliers that the statistics present in their daily distribution. Figure 4 shows the errors
associated with IMERG Early product satellite precipitation estimates according to RMSE,
MAE, and PBIAS. The IMERG Early product displayed a significant error in spatial eval-
uation precipitation estimation. The RMSE and MAE showed a latitudinal increase until
the Los Lagos region. The most noteworthy error was in Los Lagos, with values between
22.34 mm/day and 8.54 mm/day for RMSE and MAE, respectively. Comparing the MAE
results reported for the same product in Saudi Arabia, all Chilean regions had a MAE less
than 10 mm/day [19]. Therefore, the Early product demonstrates its superiority in the Chilean
territory to characterize the biases and inaccuracies present within the satellite data compared
to the rain gauge data. The Antofagasta and Atacama regions reported lower mean values of
RMSE (2.49 mm/day, 3.19 mm/day) and MAE (0.79 mm/day, 0.45 mm/day), respectively.

The PBIAS estimator revealed a slight precipitation overestimation for all regions.
The most significant overestimation detected by the satellite was reported for Arica and
Magallanes, with values of 0.14 mm/day. In the case of Arica, this was suggested by the
evaporation of precipitation in a drier atmosphere below the cloud base, while in Magal-
lanes, the overestimation could be related to the predominance of snow-covered surfaces,
which can be confused with precipitation in the case of algorithms using microwave data [5].
In the case of IMERG, precipitation estimates are given through algorithms that combine
observations from microwaves, geostationary sensors, and rain gauges. Other authors have
found overestimation results using the IMERG Early product in Iran [22] and Peru [34].
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Figure 4. Boxplot of gauge-IMERG Early product errors. 25% and 75% represent the distribution that
has an index between the 25th percentile (P25) and 75th percentile (P75), the horizontal line inside the
box shows the median, the mean value is included with a black circle, and the so-called “whiskers”
mark the maximum and minimum values that are not outside the typical range of the distribution.
Outliers are shown with a black diamond.

3.1.3. Topographic Evaluation

Chile is a country with an accentuated topography, with the second largest mountain
range in the world, the Andes, among its territory. For this reason, the territory was divided
into mountainous (Andes and Coast) and non-mountainous regions (regular terrain zones),
and the accuracy of detection in both zones was also measured for the IMERG Early product
(see Figures 5 and 6). The spatial assessment indicates that detection accuracy depends on the
geological features (topography, land use, and land type). The areas located from latitude 28◦S,
including coastal mountain, regular terrain areas, and the Andes Mountain range, showed
POD values < 0.70. POD values above 0.9 were found in some Andean mountain range
sites, which is much higher than those reported using the IMERG Early product for Saudi
Arabia [28]. The lowest POD values are concentrated in the desert region of Chile, where the
Atacama Desert is located, which may be related to the low density of stations also present in
the area. It should be noted that the interpolation leads to additional uncertainties in pixels
without rain gauges than in pixels with them [35]. Therefore, in uncovered areas such as the
Atacama Desert, special care must be taken with Early product observations.

From the north to the center, the mountainous and non-mountainous zones show the
lowest FAR values (above 0.5). On the contrary, the highest FAR values were recorded
from latitude −28◦S to the extreme south (−56◦S), in high mountain areas and the central
continental zone, reaching values between 0.70 and 1.00. From latitude −36◦S to the south,
optimal FAR and CSI values were found between 0.00–0.30 and 0.60–1.00, respectively.
The improvement of POD, FAR, and CSI values from latitude −36◦S to the last region
(Magallanes) may be related to the fact that the ground-based stations are located at low
altitudes (in the case of terrain zones). Therefore, the orographic effect is not included, as
these regions are influenced by cold masses and frontal-type precipitation in the wettest
seasons (mainly during winter) [42]. The Coastal Mountain range and Andes Mountains
range presented the lowest detection accuracy. This might be the result of the very variable
terrain (mountainous area) in that section of the nation, which results in a rainfall pattern
with high erratic variability. Particularly in the Coastal Mountain range, it may be associated
with the fact that, at medium altitudes (600–1200 m) and dominated by the advection of
humid maritime air masses, there is an overestimation by the IMERG [35], related to the
uncertainties of estimation.
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It is also possible that this is connected to the hilly terrain, which may be difficult to
navigate, and the fact that there are fewer surface stations in these regions as in other places
and therefore lower detection in the northern region versus the south. Several authors have
reported a high error rate in hilly terrain. Navarro et al. [36] indicated that precipitation
in the western Alps, Europe, was poorly represented using IMERG. Similar results were
found in Saudi Arabia by Mahmoud et al. [28], who found larger errors in coastal, foothill,
and high mountain areas when compared to other topographic areas. This research also
showed the IMERG Final product’s higher accuracy compared to the Early and Late.
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3.2. Temporal Analysis
3.2.1. Satellite Detection Accuracy

IMERG Early product performance differences were evaluated for three-time scales:
Daily, Monthly, and Yearly. The POD, FAR, and CSI indices were also included (Figures 7–9).
Generally, highest detection accuracy was found for the Yearly dataset, while lowest
accuracy was observed for the Daily and Monthly datasets. The IMERG Monthly product
performed better than the daily goods when compared to rain gauge data.
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Daily, Monthly, and Yearly POD averages were 0.60, 0.94, and 0.88, respectively. For
the Daily resolution, all data have POD values between 0.70 and 1. Each month, the rain
gauges recorded POD values between 0.80 and 1. The POD ranged from 0.20 to 1 for the
Yearly dataset. Conclusions drawn from POD analyses were corroborated by those drawn
from CSI analyses. The FAR findings demonstrate incorrect precipitation detection. For
over 70% of gauges, annual FAR values are less than 0.20.

In terms of the false detection of precipitation, the FAR’s data brought up several
interesting points. The greatest FAR values were obtained from the Yearly and Monthly
datasets, with averages of 0.06 and 0.03, respectively. In contrast, numerous erroneous
detections were found in the Daily dataset, which had an average FAR value of 0.22.
In addition, the Monthly findings suggested that the FAR values can be affected by the
aggregation of the data. The erroneous precipitation detections made by the satellite will
be obscured if the precipitation data collected at a finer resolution are aggregated into a
monthly dataset. There are FAR values of less than 0.47 in both the Daily and Monthly
datasets. Nevertheless, it is easy to notice that most of these lower values are centered
between the Biobío and Magallanes areas, which are situated in the southern part of Chile.

In this particular instance, the accuracy of precipitation identification was greatest
for the Yearly dataset, which averaged 1.0. In the case of the Daily dataset, the satellites
precipitations products, demonstrated reasonably good detection accuracy, with an average
CSI of more than 0.97 for around 64% of stations, the majority of which span the Ñuble–
Magallanes regions. This indicates that these satellites products can cover a wide range of
locations. When looking at the Daily dataset, the stations’ performance was not very good
in the first 12 areas, with CSI values ranging from 0.10 to 0.48. It is important to note the
very marked spatial pattern similar to the climatic pattern (see Figure 1a), mainly in the
climate transition zones (Valparaíso and RM. de Santiago/Maule-Biobío regions).

3.2.2. Satellite and Rain Gauge Observation Correlation

In Figure 10, the CC was used to evaluate the consistency between rain gauge obser-
vations and the IMERG Early product at different time scales. The CC showed significant
differences between temporal and spatial scales. The Daily dataset revealed the lowest
CC with values below 0.69, followed by the Yearly dataset, which improved CC above
0.69 between the Atacama and Ñuble regions. This was surpassed by the Monthly dataset,
which achieved CC values above 0.69 for most stations located between Atacama and
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Los Lagos regions, including those stations in the regions of Arica and Parinacota, Aysén,
in the mountainous zone. Therefore, the Monthly dataset presented better results than
the Yearly and Daily resolutions. This pattern alters towards the central coastal zone,
mainly for the Daily database, when decreasing the CC (0.14–0.41). Similar CC results were
found by Ramadhan et al. [43] in Indonesia. Among the temporal analyses (Hourly, Daily,
and Monthly), poor correlation for IMERG’s Daily data was found versus Monthly data.
This could be related to the high variability of rainfall on an IMERG grid, so that a point
observation may not be adequate to represent grid rainfall [34].
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It is possible to perceive that, for all temporal resolutions, the sectors with low correla-
tion are located in the Andes Mountains, from the Metropolitana de Santiago to Magallanes
regions. This may be a consequence of the lower density of pluviometers, heterogeneity of
rainfall distribution, or variation in topography [19] across the Chilean territory.

3.2.3. Satellite Error Evaluation

Figure 11a,b compares multiple temporal scales (Monthly and Yearly) using MAE,
RMSE, and PBIAS. For Chile, the IMERG Early product showed a significant error in
Monthly resolution. The RMSE and MAE showed a latitudinal increase until the Los
Lagos region. The most significant error was observed in Los Lagos, with average values
of 236.63 mm/month and 165.54 mm/month for RMSE and MAE, respectively. For the
Antofagasta and Atacama regions, the lower mean values of RMSE (23.76 mm/month,
25.85 mm/month) and MAE (12.04 mm/month, 11.00 mm/month) were reported. The
PBIAS estimator for Monthly and Yearly distributions revealed a slight overestimation for
all regions, which found the most significant overestimation for Antofagasta, with values
of 0.16 mm/month and 48 mm/year.
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Figure 11. Boxplot of gauge-IMERG Early product for (a) Monthly and (b) Yearly errors. 25% and
75% represent the distribution that has an index between the 25th percentile (P25) and 75th percentile
(P75), the horizontal line inside the box shows the median, the mean value is included with a black
circle, and the so-called “whiskers” mark the maximum and minimum values that are not outside the
typical range of the distribution. Outliers are shown with a black diamond.

Similarly, the Yearly resolution reported increased RMSE and MAE values towards
the south. The most significant error was observed in Los Lagos, with average values of
1946.64 mm/year and 1859.49 mm/year for RMSE and MAE, respectively. The IMERG
Early product showed a significant error in Daily precipitation estimation for Chile. The
RMSE and MAE showed a latitudinal increase until the Los Lagos region. As latitude
increases, so does the error, which is justified by the low detection of the sensor in high-
latitude areas (above 60◦S).

Research on the performance of this satellite precipitation product is necessary, mainly
because it offers precipitation estimates at high spatial and temporal resolutions, which is
an advantage in non-instrumented areas, as long as the sensor performance is statistically
satisfactory. If reliable, this can be used as input data in different types of models for
different applications. The GPM product has been recognized for its good performance
in various hydrological applications, such as rainfall frequency analysis [44], extreme
precipitation [45], flood analysis [46], and drought monitoring [47]. Chile is a country
affected by several types of hydrometeorological events [45,48]. As such, we wanted
to test the performance of the IMERG Early product to support disaster response and
recovery [49]. In addition, there are a limited number of studies consider IMERG Early
products in the country. The spatial and temporal resolutions of IMERG provide a valuable
product for examining precipitation events [29] that may result in floods, landslides, or
other weather-induced phenomena in Chile. However, it is vital to highlight the limitations
related to this work.
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Several factors can affect detection uncertainty, including errors from ground mea-
surements (instruments, atmospheric conditions, and gaps in the data) and errors from
satellite sensors [10,34,35]. Variables such as the brightness of the visible spectrum clouds
and cloud error may influence satellite precipitation estimates [50]. It is possible for errors
resulting from the use of IMERG algorithms to propagate to applications dependent on
IMERG data, like hydrological models [10].

3.3. Limitations and Future Remarks

The general objective of this work has been to assess the performance of the GPM
sensor and rainfall stations throughout Chile. The following are some limitations found for
this study:

1. Chile’s rain gauge network does not have a uniform density for the whole country.
The stations are dense in the center of Chile, while in the north and south they are
scarce. A dense gauge network would also allow better evaluation, quantifying the
errors and uncertainties associated with satellite estimates.

2. Some rainfall stations did not present complete data for the six years evaluated and
therefore were not considered in this research.

3. This study considered only the IMERG Early product, since Chile is one of the countries
most vulnerable to climate change worldwide. In addition, several hazards are present
in the country, including hydrometeorological events. Therefore, measuring the early-
warning capability of the sensor for Chile could help in risk management. However,
there is a need to carry out a comprehensive study, including Late and Final products.

4. An uncertainty analysis should be carried out to determine whether the El Niño-Southern
Oscillation (ENSO) cycle may influence the climate, including precipitation pattern.

5. This study evidences that, despite the technological advances in remote sensing,
considerable uncertainties remain in the products from the satellite mission [51,52].
Satellite precipitation estimates are often affected by random and systematic errors
(bias). In this case, a systematic error correction approach based on a multiplicative
bias correction factor through the ISIMIP [53] or SCALING method [54] will be
included in future work.

However, it is possible to add that, despite its limitations, the IMERG Early product
reveals a promising path for current and future applications. A possible continuation of this
work is to consider an analysis of the IMERG Early product’s performance and compare it
with other products (Late or Final), considering the type of associated cloudiness [20].

4. Conclusions

This research evaluates the IMERG Early product for the first time, using data from
651 rain gauge stations throughout Chile over the course of six consecutive years. Analysis
performed in Chilean territory reveals that hydroclimatic parameters of the zone, rain
gauge distribution, and geographic characteristics are most influential in rainfall estimates.
The following points conclude the findings of this study:

1. The spatial analysis shows that the IMERG Early product has acceptable detectability
for some regions, climates, and reliefs. POD and CSI values indicate that the IMERG
Early product is able to detect rain, with better results from the center to the south of the
country. However, FAR values are significant in the north of the country (arid region).

2. The Coastal Mountain and Andes Mountains ranges presented the lowest
detection accuracy.

3. The worst temporal performance was found for the Daily distribution compared to
Monthly and Yearly data. Areas located in the Andes Mountain range showed a lower
CC from the Metropolitana de Santiago to the Magallanes regions.

4. For the three temporal distributions (Daily, Monthly, and Yearly), the errors (MAE
and RMSE) showed a latitudinal increase and slightly overestimated throughout the
country. The PBIAS is higher in the arid region and the Magallanes region.



Remote Sens. 2023, 15, 573 15 of 17

Overall, this study suggests that the IMERG Early product offers a promising path for
current and future applications.
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