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Abstract: Infusions of Valeriana pilosa are commonly used in Peruvian folk medicine for treating
gastrointestinal disorders. This study aimed to investigate the spasmolytic and antispasmodic effects
of Valeriana pilosa essential oil (VPEO) on rat ileum. The basal tone of ileal sections decreased
in response to accumulative concentrations of VPEO. Moreover, ileal sections precontracted with
acetylcholine (ACh), potassium chloride (KCl), or barium chloride (BaCl2) were relaxed in response
to VPEO by a mechanism that depended on atropine, hyoscine butylbromide, solifenacin, and
verapamil, but not glibenclamide. The results showed that VPEO produced a relaxant effect by
inhibiting muscarinic receptors and blocking calcium channels, with no apparent effect on the
opening of potassium channels. In addition, molecular docking was employed to evaluate VPEO
constituents that could inhibit intestinal contractile activity. The study showed that α-cubebene,
β-patchoulene, β-bourbonene, β-caryophyllene, α-guaiene, γ-muurolene, valencene, eremophyllene,
and δ-cadinene displayed the highest docking scores on muscarinic acetylcholine receptors and
voltage-gated calcium channels, which may antagonize M2 and/or M3 muscarinic acetylcholine
receptors and block voltage-gated calcium channels. In summary, VPEO has both spasmolytic and
antispasmodic effects. It may block muscarinic receptors and calcium channels, thus providing a
scientific basis for its traditional use for gastrointestinal disorders.

Keywords: Valeriana pilosa; antispasmodic effect; essential oil; molecular docking

1. Introduction

Gastrointestinal disorders are related to motility disturbances, visceral hypersensi-
tivity, altered mucosal and immune functions, gut microbiota dysbiosis, and impaired
regulation by the central nervous system [1]. Gastrointestinal dysfunction is associated
with significant global healthcare costs [2,3] and decreased quality of life [4]. Existing
synthetic antispasmodic drugs may cause unpleasant side effects such as dizziness, blurred
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vision, fatigue, and dry mouth. Therefore, discovering new molecules with antispasmodic
properties is an important goal for the pharmaceutical industry [5].

Medicinal plants are complex mixtures of compounds that have served as sources
of drugs for centuries. Approximately half of the current pharmaceutical therapies are
derived from medicinal plants [6].

Little is known about the effects of essential oils on the intestinal microbiota [7], which
has been demonstrated to modulate intestinal motility [8–11]. Interestingly, short-chain
fatty acids, mainly produced by intestinal bacteria, modulate intestinal motility [10].

Valeriana pilosa R & P. is a plant belonging to the genus Valeriana and distributed in the
Andean region. In Peru, it is known as “Valeriana”, “Coche coche”, “Valeriana de paramo”,
“Ornamo”, or “Babilla”. Vertical rhizome and attached roots from Valeriana pilosa are widely
used as antispasmodic, relaxing, anti-inflammatory, and sleep-promoting agent [12,13].

Our continuous interest in the volatile components of plant species from Chilean and
Peruvian Andean highland communities has been the focus of our chemical and biological
research projects [14–19].

In this study, we report spasmolytic and antispasmodic activities of VPEO on intestinal
contractile activity. The VPEO-mediated effect appears to be mediated by muscarinic
receptor antagonism, calcium channel blockade, and potassium channel opening, which
may explain the traditional use of the plant in gastrointestinal disorders. Additionally,
we performed in silico molecular docking analyses of the major constituents in VPEO
and found that some molecules have the potential to bind to M2 muscarinic acetylcholine
receptors (M2R), M3 muscarinic acetylcholine receptors (M3R), and voltage-gated calcium
channels (Cav1.2).

2. Materials and Methods
2.1. Chemicals, Drugs, and Solutions

Acetylcholine hydrochloride (ACh), barium chloride (BaCl2), ethylenediaminete-
traacetic acid (EDTA), calcium chloride (CaCl2), glibenclamide, D-glucose, magnesium
chloride (MgCl2), potassium chloride (KCl), potassium dihydrogen phosphate (KH2PO4),
sodium bicarbonate (NaHCO3), sodium chloride (NaCl), sodium phosphate monobasic
(NaH2PO4), and verapamil were purchased from Sigma-Aldrich (St. Louis, MO, USA) and
Merck (Peruana S. A, Ate, Lima, Perú).

2.2. Plant Material

Roots (250 g) of Valeriana pilosa R & P. were collected in January 2022 in the Community
of San Juan de Corralpampa at 3500 m above sea level, in the province of Hualgayoc,
Department of Cajamarca, Perú. They were then subjected to hydrodistillation for 3 h,
using a Clevenger-type apparatus. The oil obtained was dried over anhydrous sodium
sulfate. Afterward, it was filtered and stored under protection at +4 ◦C for further analysis
and testing [20].

2.3. Gas Chromatography Analysis (GC) and Gas Chromatography–Mass Spectrometry (GC–MS)
of Valeriana Pilosa Essential Oil (VPEO)

All chemicals were of analytical reagent grade; they were obtained from Sigma-Aldrich-
Fluka (St. Louis, MO, USA) and Merck (Darmstadt, Germany), and were used as supplied.
Chromatographic analysis of VPEO was performed using a Perkin Elmer Clarus 600 gas
chromatograph, following to the procedure reported by Benites et al. [19].

GC–MS analysis of VPEO was carried out as previously reported [20]. Briefly, analyses
were performed on a Perkin Elmer Clarus 600 gas chromatograph, consisting of a DB-1
fused-silica column (30 m × 0.25 mm i.d., film thickness 0.25 uM; J & W Scientific, Folsom,
CA, USA), and interfaced with a Perkin Elmer Clarus 600T mass spectrometer (software
version 4.1, Perkin Elmer, Shelton, CT, USA). The injector and oven temperatures were
as follows: transfer line temperature, 280 ◦C; ion source temperature, 220 ◦C; carrier gas,
helium, adapted to a linear rate of 30 cm/s; split ratio, 1:40; ionization energy, 70 eV; scan
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range, 40–300 m/z; and scan time, 1 s. The components were identified by comparing their
retention indices relative to C9–C21 n-alkane indices and GC–MS spectra from the mass
spectra library and commercial sample standards.

2.4. Animals

The experiments in this study were performed following the procedures of the Ameri-
can Veterinary Medical Association (AVMA) [21] and the Ethics Committee of Pharmacy
and Biochemistry Faculty of the National University of Trujillo (COD.N◦: P 012-19/CEIFYB).
Twenty male rats (8–10 weeks old Rattus norvegicus Holtzman, 170–200 g) were housed
in cages (22–25 ◦C, 12 h light/dark cycles) with ad libitum access to standard rat chow
(Molinorte S.A.C., Trujillo, Peru) and water.

2.5. Preparation of Rat Ileum

Animals were sacrificed by cervical dislocation. A portion of the ileum (2.5 cm),
without considering the 10 cm nearest to the ileocecal valve, was removed and placed into a
petri dish containing Tyrode’s solution (concentrations in mM): NaCl 136.9; KCl 2.68; CaCl2
1.8; MgCl2 1.05; NaHCO3 11.9; NaH2PO4 0.42; and D-glucose 5.55 [22]. Ileum fragments
were placed into an isolated organ chamber filled with 25 mL of Tyrode´s solution. The
chamber was kept at 37 ◦C continuously gassed with a mixture of 95% O2 and 5% CO2 (pH
7.4). Resting tension was fixed at 1 g. The experimental data were recorded using a Power
Lab 26T system (AD-Instruments Pty Ltd., Bella Vista, NSW, Australia) with the LabChart
8 program for Windows (Colorado Springs, CO, USA).

2.6. Ex Vivo Experimental Protocol
2.6.1. Effect of VPEO on the Basal Tone of Rat Ileum

The contractility of the rat ileum in response to VPEO was assessed through cumulative
dose–response experiments. A series of seven distinct concentrations of VPEO (1, 10, 100,
250, 500, 750, and 1000 µg/mL) were administered in 5 min intervals [22].

2.6.2. Spasmolytic Effect in Precontracted Rat Ileum

Neurotropic spasm was induced using acetylcholine (ACh), whereas musculotropic
spasm was induced using highly concentrated potassium chloride (KCl)- or barium chloride
(BaCl2)-containing solutions [22]. Isolated ileal sections were treated with ACh (10−5 M),
KCl (60 mM), or BaCl2 (5 mM) for 10 min or until a stable contractile plateau (plateau) was
reached. Then, different VPEO concentrations (1, 10, 100, 250, 500, 750, and 1000 µg/mL)
were sequentially added to the tissue chamber.

2.6.3. Antispasmodic VPEO Effect in the Dose–Response Curves of ACh, KCl, and BaCl2
The effect of VPEO on the contractibility in response to ACh was assessed as follows:

dose–response experiments (ACh, 10−10 to 10−3 M) before and after VPEO (250 and
500 µg/mL) administration were performed in the same experiment.

Similar experiments to those described above but contracting the ileal sections with
KCl (10−4 to 10−1 M) or BaCl2 (10−8 to 10−2 M) were performed.

Dose–response data were fitted to the standard Hill’s function using Graphpad.

2.6.4. Role of Extracellular Ca2+ Influx in the Intestinal VPEO-Mediated Relaxation

In addition to the Tyrode´s solution, a calcium-free solution was prepared for this
experiment. The solution had the following composition (concentrations in mM): KCl 50;
NaCl 91.04; MgCl2 1.05; NaHCO3 11.87; NaH2PO4 0.41; glucose 5.55; and EDTA 0.1 [23].
Initially, the tissue was stabilized in normal Tyrode´s solution and then replaced with a
Ca2+-free Tyrode´s solution. Then, 10 min after the addition of calcium-free solution, the
intestinal sections were contracted with ACh 10−5 M, followed by the addition of increasing
CaCl2 concentrations (0.1 mM; 0.3 mM; 0.6 mM; and 1 mM). Then, the tissue was washed
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with normal Tyrode’s solution for at least 10 min, followed by the addition of VPEO (250
and 500 µg/mL) for 20 min [22].

After VPEO incubation in normal Tyrode’s solution, intestinal sections were incu-
bated with VPEO-supplemented calcium-free solution, then contracted with ACh 10−5 M,
followed by increasing CaCl2 concentrations (0.1 mM; 0.3 mM; 0.6 mM, and 1 mM).

The tension was re-adjusted in the middle of the experiment to 1 g when necessary [22].

2.6.5. Effect of VPEO on Muscarinic Receptors

To analyze the role of VPEO in muscarinic receptor activity, experiments were car-
ried out in the absence/presence of atropine (a non-selective muscarinic antagonist) [24],
hyoscine butylbromide (M2–M3 blockers) [25], or solifenacin (selective M3 blocker) [26].
First, the tissue was stabilized for 1 h and then washed in 15 min intervals (4–5 times) with
Tyrode’s solution. The tension was adjusted to 1 g when necessary. Then, ileal sections
were treated with increasing doses of VPEO (1, 10, 100, 250, 500, 750, and 1000 µg/mL).
Afterward, the sections were washed 4–5 times in 15 min intervals, and the tension was
adjusted to 1 g. The tissue was pre-incubated for 20 min with 1.0 µM atropine, 1.0 µM
hyoscine butylbromide, or 1.0 µM solifenacin, and then different VPEO concentrations
were added (1–1000 µg/mL).

2.6.6. Effects of VPEO on Voltage-Gated Calcium Channel

To determine whether the effect of VPEO was related to the inhibition of voltage-gated
calcium channel, experiments were performed in the absence and presence of verapamil (a
voltage-gated calcium channel blocker). Initially, the tissue was stabilized for 1 h and then
washed in 15 min intervals (4–5 times). The tension was adjusted again to 1 g if necessary.
The tissue was pre-incubated with verapamil (1.0 µM) [27] for 20 min. Then, different
VPEO concentrations (1, 10, 100, 250, 500, 750, and 1000 µg/mL) were added in intervals of
5 min.

2.6.7. Effects of VPEO on Potassium Channel Blockers

The role of K+ channels in VPEO-induced relaxation was investigated by pre-incubating
the ileum rat for 20 min with two K+ channel blockers, namely, glibenclamide [28] (ATP
sensitive K+ channel blocker), and barium chloride [29] (an inward rectifier K+ channel
blocker). The tissue was stabilized for 1 h and then washed in 15 min intervals (4–5 times).
The tension was adjusted again to 1 g if necessary. The tissue was pre-incubated with
glibenclamide (10 µM) and barium chloride (1 mM) for 20 min. Then, VPEO was added (1,
10, 100, 250, 500, 750, and 1000 µg/mL) in intervals of 5 min for each successive dose, and
the response was recorded.

2.7. In Silico Studies

Molecular modelling analysis of compounds 1–47 (see the SMILES in supplementary
materials) of VPEO [20] to M2 Muscarinic Acetylcholine Receptor [30], M3 Muscarinic
Acetylcholine Receptor [31], and Cav1.2 L-type voltage-gated calcium channel [32] were
performed using AutoDock (v 4.2.1), AutoDock Vina (v 1.0.2) [33], and AutoDockTools
packages [34]. The crystal structures considered for these docking studies had the following
PDB Codes: 3UON (M2 Muscarinic Acetylcholine Receptor), 4DAJ (M3 Muscarinic Acetyl-
choline Receptor), and 5V2P (L-type voltage-gated calcium channel). Data was obtained
from the Protein Data Bank [35]. The three-dimensional coordinates of all structures were
optimized using MOPAC2016 software by the PM6-D3H4 semi-empirical method [36,37].
The crystal structures were treated with Schrödinger’s Protein Preparation Wizard [38];
polar hydrogen atoms were added, nonpolar hydrogen atoms were merged, and charges
were assigned. Docking was treated as rigid and performed using the empirical free energy
function and Lamarckian Genetic Algorithm provided by AutoDock Vina [39]. The grid
map dimensions were 20 × 20 × 20 Å3. The center of the binding site were the following
coordinates for each of the proteins studied (Table 1).
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Table 1. Cartesian coordinates of the center grid box (in Å) for M2 Muscarinic Acetylcholine Receptor,
M3 Muscarinic Acetylcholine Receptor, and Cav1.2 (L-type voltage-gated calcium channel).

Protein PDBID
Center Grid Box

x y z

M2 Muscarinic Acetylcholine Receptor 3UON 7.79 0.25 −3.95
M3 Muscarinic Acetylcholine Receptor 4DAJ −14.79 −7.50 −42.53

Cav1.2 L-type voltage-gated calcium channel 5V2P 7.76 42.10 123.95

All other parameters were set to their default values as defined by AutoDock Vina.
Dockings were repeated 10 times, with the space search exhaustiveness set to 100. The best
interaction binding energy (kcal·mol−1) was selected for evaluation. Docking results in
3D representations were obtained using Discovery Studio [40] 3.1 (Accelrys, San Diego,
CA, USA) molecular graphics system. The co-crystallized ligands were removed from
their proteins and saved separately in the PDB format, which was used for redocking their
respective protein active domains to validate our docking methodology [20].

Ligand Efficiency (LE), Binding Efficiency Index (BEI), Lipophilic Ligand Efficiency
(LLE), and Non-Covalent Interaction Index (NCI) were calculated according to a previously
reported procedure [20].

2.8. Statistical Analysis

GraphPad Prism 8.0.2 software (San Diego, CA, USA) was used for the statistical
analyses. Non-linear regression analysis (three-parameter Hill function) was generated to
compare dose–response curves. Two-way ANOVA analysis followed by the Bonferroni
post hoc test was used to evaluate the significance between different groups.

3. Results
3.1. Spasmolytic Activity of VPEO on Rat Ileum

VPEO significantly decreased the muscle tone of the rat ileum at 100 µg/mL
(70.63 ± 4.82% reduction compared to the control condition; p < 0.01) (Figure 1A). VPEO-
mediated effect was dose-dependent, where 750 and 1000 µg/mL doses showed a higher
effect compared to the 100 µg/mL dose (p < 0.05).
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Figure 1. Effect of essential oil from Valeriana pilosa (VPEO) on rat ileum. VPEO relaxes the basal 
tone in rat ileum segments (A), VPEO-relaxed ileal segments precontracted with 10−5 M ACh (B), 60 
mM KCl (C), or 5 mM BaCl2 (D). In panel (A), the control represents the basal tone (100% contrac-
tion) without any treatment. In panels (B–D), the control represents the maximum response (100%) 
induced by ACh, KCl, and BaCl2, respectively. In addition, original records of the relaxation effects 
of VPEO in the rat ileum are shown on the right side. Each bar represents the mean value of the 
response as a percentage ± SEM of five experiments (n = 5). Statistical differences: ** p < 0.01; *** p < 
0.001 vs. control. 
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Figure 1. Effect of essential oil from Valeriana pilosa (VPEO) on rat ileum. VPEO relaxes the basal tone
in rat ileum segments (A), VPEO-relaxed ileal segments precontracted with 10−5 M ACh (B), 60 mM
KCl (C), or 5 mM BaCl2 (D). In panel (A), the control represents the basal tone (100% contraction)
without any treatment. In panels (B–D), the control represents the maximum response (100%) induced
by ACh, KCl, and BaCl2, respectively. In addition, original records of the relaxation effects of VPEO
in the rat ileum are shown on the right side. Each bar represents the mean value of the response
as a percentage ± SEM of five experiments (n = 5). Statistical differences: ** p < 0.01; *** p < 0.001
vs. control.

The spasmolytic activity was determined by measuring the relaxation induced by
VPEO in ileal sections precontracted with (a) 10−5 M ACh (muscarinic agonist)
(Figure 1B), (b) 60 mM KCl (depolarizes the smooth muscle cell membrane and opens
voltage-dependent Ca2+ channels) (Figure 1C), and (c) 5 mM BaCl2 (a non-selective blocker
of the current rectifying potassium channels; KIR) (Figure 1D).

VPEO significantly relaxed, in a dose-dependent manner, precontracted intestinal
segments with ACh, KCl, and BaCl2. For instance, 100 µg/mL VPEO relaxed ileal sec-
tions precontracted with ACh, KCl, and BaCl2 by 54.62 ± 5.7%, 60.88 ± 6.2%, and
73.89 ± 2.2%, respectively.

3.2. Antispasmodic Activity of VPEO on Rat Ileum
3.2.1. Role of Muscarinic Acetylcholine Receptors

Experiments were performed to determine whether VPEO modifies ACh-evoked in-
testinal contractions in the intact rat ileal tissue. Initially, ileum contractions were recorded
before and after VPEO treatment (Figure 2A). VPEO at a dose of 500 µg/mL significantly
reduced (p < 0.05) the ACh-induced contraction (10−7 M ACh): 40.5 ± 8.45% (control) vs.
18.4 ± 1.96% (VPEO); Figure 2B,B.1. Similarly, in the presence of 1 µM atropine (a non-
selective muscarinic receptor antagonist), the contractile effect of ACh (10−7 M) was sup-
pressed (4.6 ± 1.19%, p < 0.001), as shown in Figure 2B.1. Moreover, increasing concen-
trations of ACh in the presence of VPEO significantly reduced ACh-induced contractions
in the rat ileum (Figure 2B.1–B.4). Interestingly, in the Figure 2B, the nonlinear regression
analysis of the dose–response curve shows that the pEC50 values for ACh in the presence of
250 µg/mL (6.22 ± 0.09) and 500 µg/mL (5.75 ± 0.08) of VPEO were significantly different
to that obtained under control conditions (6.53 ± 0.11).
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Figure 2. The antispasmodic activity of Valeriana pilosa essential oil (VPEO) reduces the contractile
response to acetylcholine (ACh). The original record shows the effects of ACh on rat ileum segments
in the absence and presence of VPEO. (A) The dose–response curve versus ACh when the rat ileum
muscle tissue was pre-incubated with VPEO (250 and 500 µg/mL) and atropine 1 µM for 20 min
before contraction with ACh. (B) Pre-incubation with VPEO (250 and 500 µg/mL) and atropine 1 µM
reduced the contraction induced by Ach 10−7–10−4 M (B.1–B.4). Each point and bar represent the
mean of maximal response in percentage ± SEM of five experiments (n = 5). * p < 0.05; ** p < 0.01;
*** p < 0.001 vs. control.

3.2.2. Effect of VPEO on Intestinal Sections Precontracted with KCl or BaCl2
Figure 3A shows the effect of different KCl concentrations on ileum contractions. To

study the antispasmodic activity, intestinal strips from wild-type rats were pre-incubated
with the essential oil. VPEO significantly reduced the contraction induced by 10−2 M
KCl: 71.46 ± 8.93% (p < 0.05) and 38.58 ± 9.74% (p < 0.001) compared to the control in the
presence of 250 µg/mL and 500 µg/mL VPEO, respectively (Figure 3B.1). Similar results
were observed for 10−1.5 M KCl: 62.82 ± 6.03% (p < 0.01) and 59.03 ± 10.46% (p < 0.01)
compared to the control in the presence of 250 µg/mL and 500 µg/mL VPEO, respectively
(Figure 3B.2). In Figure 3B, the nonlinear regression analysis of the dose–response curve
shows that the sensitivity to KCl (pEC50) in the presence of 250 µg/mL (2.12 ± 0.25) and
500 µg/mL (1.74 ± 0.29) VPEO was not significantly different from that obtained under
control condition (2.19 ± 0.22).
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Figure 3. Antispasmodic activity of Valeriana pilosa essential oil (VPEO) in rat ileum. The original
record shows the effects of KCl (A) and BaCl2 (C) on rat ileum in the absence and presence of
VPEO. Rat ileum muscle tissue was pre-incubated with VPEO (250 and 500 µg/mL) for 20 min
before contraction with KCl (B) and BaCl2 (D), and pre-incubation with VPEO 250 (B.1,D.1) and
500 µg/mL (B.2,D.2) reduced contraction. Each point represents the mean of maximal response in
percentage ± SEM of five experiments (n = 5). n.s = not significant, statistical differences: * p < 0.05;
** p < 0.01; *** p < 0.001 vs. control.

On the other hand, high concentrations of BaCl2 (10−8–10−2 M) block not only inward
rectifier potassium channels (KIR), but also voltage-gated potassium channels (VGKCs). In
Figure 3C, the dose–response curves of ileum contractions induced by BaCl2 in the presence
and absence of VPEO are recorded. Pre-incubation with VPEO significantly reduced the
contraction induced by 10−4 M BaCl2: 23.75 ± 2.47% (250 µg/mL VPEO; p < 0.01) and
31.18 ± 11% (500 µg/mL VPEO; p < 0.05; Figure 3D.1); and 10−3 M BaCl2: 79.5 ± 1%
(250 µg/mL VPEO; p < 0.01) and 73 ± 5.2% (500 µg/mL VPEO; p < 0.05, Figure 3D.2)
compared to the value obtained under control condition. In Figure 3D, the nonlinear
regression analysis of the dose–response curve shows that the sensitivity to BaCl2 (pEC50)
in the presence of 250 µg/mL (3.35 ± 0.06) and 500 µg/mL (3.68 ± 0.18) VPEO was not
significantly different from that obtained under control condition (3.95 ± 0.36).
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3.3. Determination of the Mechanisms of Action Underlying the VPEO Effect
3.3.1. Effect of VPEO on Muscarinic Receptors

After observing that VPEO reduced the effect of ileum contractions induced by ACh,
we studied how VPEO affected the blockade of muscarinic receptors. The intestinal strips
were pre-incubated with atropine (a non-selective muscarinic antagonist), hyoscine butyl-
bromide (M2–M3 muscarinic antagonist), and solifenacin (M3 selective muscarinic antago-
nist), at doses of 1 µM; then, concentrations of VPEO were added.

Figure 4A,B shows tissues pre-incubated with atropine and hyoscine butylbromide,
respectively, at a dose of 1 µM. In ileal tissues pre-incubated with 1 µM atropine (Figure 4A)
or 1 µM hyoscine butilbromide (Figure 4B), the relaxant effect of 100 µg/mL VPEO was
significantly (p < 0.05) reduced (0.67 ± 5.54% and 0.63 ± 10.55%) compared to ileal tissues
that were not pre-incubated with antagonists (29.37 ± 4.82%). At the highest dose of VPEO
(1000 µg/mL), the relaxation was more significant against atropine 1 µM (18.33 ± 7.67%,
p < 0.01) than in hyoscine butylbromide 1 µM (30 ± 5.4%, p < 0.05) compared to the control
(57.15 ± 5.84%). On the other hand, the relaxant dose–response of VPEO in the presence
of solifenacin 1 µM decreased compared with that of the control, albeit not significantly
(p > 0.05), as shown in Figure 4C.
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Figure 4. Relaxant effects of VPEO against (A) atropine 1 µM, (B) Hyoscine butylbromide 1 µM,
(C) Solifenacin 1 µM in rat ileum sections. Each point represents the mean of maximal response in
percentage ± SEM of five experiments (n = 5). n.s = not significant, statistical differences: * p < 0.05;
** p < 0.01; *** p < 0.001 vs. control.

These results indicate that the blockade of M3 and M2 receptors mediate the relaxant
effect of VPEO.

3.3.2. Extracellular Ca2+ Dependence of VPEO Effect

The relation between the relaxant effect of VPEO (250 and 500 µg/mL) and extra-
cellular calcium was assessed. The contraction induced by the cumulative concentration
of extracellular Ca2+ ions (0 to 1 mM) in ileum rats precontracted with ACh (10−5 M)
maintained in Ca2+-free Tyrode’s solution (containing 0.1 mM EDTA) in the presence
and absence of VPEO was determined (Figure 5A). The cumulative addition of calcium
ions in Ca2+-free Tyrode increased in the contraction of ileal sections in a concentration-
dependent manner. Pre-treatment with VPEO at concentrations of 500 µg/mL (171 ± 29.1%
vs. 249.1 ± 23.8 control; p < 0.01) significantly decreased the contraction induced by CaCl2
0.6 mM. However, the concentration–response curve produced by the different concentra-
tions of calcium ions was significantly decreased in the presence of VPEO compared to the
control (Figure 5B).
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Figure 5. Effect of extracellular calcium in the presence and absence of VPEO in ileum rats precon-
tracted with ACh (10−5 M). The original record shows the time course of the contractile response
to CaCl2 in Ca2+-free Tyrode’s solution (containing 0.1 mM EDTA) in the absence and presence of
VPEO (A). Concentration–response curve of CaCl2 in ileum rats in the absence and in the presence
of VPEO (250 and 500 µg/mL) (B). Effects of verapamil (voltage-gated calcium channel blocker) on
VPEO-induced relaxation in ileum rats (C). Each point represents the mean of maximal response in
percentage ± SEM (n = 5–9). * p < 0.05; ** p < 0.01 vs. control.

The relaxant effect produced by VPEO was decreased in the presence of verapamil
1 µM (p < 0.05, Figure 5C). For instance, relaxation induced by VPEO in ileal sections treated
with 100 µg/mL VPEO was 29.37 ± 4.82 vs. 6.73 ± 1.16, control vs. verapamil, respectively.
Taken together, the results suggest that essential oils might decrease contraction by reducing
the entry of calcium ions into smooth muscle cells produced by extracellular calcium.

3.3.3. Effect of Two K+ Channel Blockers on the Relaxation in Precontracted Ileum

The antispasmodic effect of VPEO in the rat ileum pre-incubated for 20 min with
two K+ channel blockers, glibenclamide (an ATP-sensitive K+ channel blocker, 3 µM) and
barium chloride (inward rectifier K+ channel blocker, 1 mM) was studied. The relaxation
induced by VPEO in the rat ileum was unaffected by glibenclamide (Figure 6A) or BaCl2
(Figure 6B) treatment. Therefore, we conclude that Valeriana pilosa root essential oil does
not induce opening of potassium channels in rat ileum.
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Figure 6. The effects of two potassium channel blockers separately of VPEO induced relaxation on
rat ileum precontracted with KCl (20 mM) and ACh (10−5 M). (A) glibenclamide an ATP sensitive K+

channel blocker, 10 µM and (B) barium chloride, inward rectifier K+ channel blocker, 1 mM. Data
represented as mean ± SEM (n = 4–8).

3.4. Molecular Docking and Ligand Efficiency Analysis of VPEO

We have recently described the chemical composition and antioxidant activity of the
essential oil from Valeriana pilosa roots (VPEO). A total of 47 compounds were identified,
where sesquiterpene hydrocarbons, monoterpene hydrocarbons, oxygenated monoter-
penes, and oxygenated sesquiterpenes were the major constituents. Within the sesquiter-
penes, the major constituents of VPEO were α-patchoulene (5.8%), α-humulene (6.1%),
seychellene (7.6%), and patchoulol (20.8%), as well as spathulenol, T-cadinol, and γ-cadinol
as minor constituents [20].

Molecular docking was performed to identify possible VPEO constituents that could
inhibit some proteins involved in intestinal contractile activity. Based on the results obtained
in the current study, we selected M2 and M3 Muscarinic Acetylcholine Receptor and Cav1.2
(L-type voltage-gated calcium channel). Table 2 shows a heat map of intermolecular docking
energy values of 47 VPEO compounds. The values appear in a three-color scheme (red–
yellow–green), where red represents the most stable binding energies and green represents
the least stable ones. Table 2 shows a clear trend of compounds acting as putative inhibitors
of the M2 and M3 muscarinic acetylcholine receptors.

Based on the information shown in Table 2, M2 and M3 muscarinic acetylcholine recep-
tors appeared to be the best protein targets for some VPEO constituents, as shown by their
intermolecular docking energy (∆Ebinding), score normalization of the binding energy based
on the number of non-hydrogen atoms (IEnorm.binding), and Ligand Efficiency (LE) values.
Indeed, using the weighted arithmetic mean values (related to % of composition, see supple-
mentary materials) shown in Table 3 obtained for all compounds, binding values were used
for the analysis of M2 muscarinic acetylcholine receptor: ∆Ebinding, LE, and IEnorm.binding

values were −7.67, 0.55, −2.06 kcal·mol−1, and the M3 muscarinic acetylcholine receptor,
the ∆Ebinding, LE, and IEnorm.binding were −8.03, 0.58, and −2.15 kcal·mol−1, respectively,
while, in comparison with the Cav1.2 (L-type voltage-gated calcium channel) protein target,
the ∆Ebinding, LE, and IEnorm.binding, binding values were −5.11, 0.37, and −1.37 kcal·mol−1.
Therefore, these results show that the M3 muscarinic acetylcholine receptor, as a target
protein, is probably involved in the effects of VPEO, which means that they might be
involved in the anti-spasmodic activities of VPEO compounds.
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Table 2. Heat map of the intermolecular docking energy values (kcal·mol−1) of VPEO compounds
on M2 and M3 Muscarinic Acetylcholine and Cav1.2 (L-type VGCC) receptors.

N◦ Components M2 M3 Cav1.2
1 Isovaleric acid −4.8 −4.5 −4.2
2 Tricyclene −6.8 −6.5 −4.4
3 α-Thujene −6.5 −6.7 −4.6
4 α-Pinene −6.5 −6.8 −4.3
5 Camphene −6.9 −6.7 −4.6
6 3-Methyl valeric acid −4.7 −4.8 −4.4
7 Sabinene −6.5 −6.8 −4.7
8 1-Octen-3-ol −5.2 −5.1 −3.7
9 β-Pinene −6.6 −6.8 −4.4
10 Myrcene −6 −5.9 −3.7
11 Limonene −6.5 −6.5 −4.5
12 p-Cymene −6.6 −6.5 −4.6
13 1,8-Cineole −6.7 −6.7 −4.4
14 Linalool −6 −5.9 −4.5
15 Isopentyl isovalerate −5.8 −6.0 −4.3
16 Camphor −6.9 −6.7 −4.2
17 Menthone −6.9 −6.7 −4.4
18 Isomenthone −6.9 −6.7 −4.4
19 Borneol −6.8 −6.5 −4.1
20 Neomenthol −6.8 −6.6 −4.2
21 Menthol −6.4 −6.3 −4.2
22 Carvone −6.9 −6.9 −4.7
23 Menthyl acetate −7.5 −7.4 −4.7
24 α-Cubebene −8.5 −9.0 −5.5
25 Cyclosativene −8.5 −8.9 −5.4
26 α-Copaene −8.2 −8.2 −5.3
27 β-Patchoulene −9.1 −9.4 −5.8
28 β-Bourbonene −8.9 −9.1 −5.1
29 β-Elemene −8.1 −8.0 −5
30 β-Caryophyllene −9.0 −9.1 −5.6
31 Seychellene −7.9 −8.4 −5.4
32 α-Guaiene −8.6 −9.0 −5.7
33 α-Humulene −8.6 −9.1 −5.3
34 allo-Aromadendrene −8.3 −8.6 −5.4
35 α-Patchoulene −8.3 −8.7 −5.5
36 γ-Muurolene −9.1 −9.2 −5.5
37 Germacrene-D −8.6 −8.8 −5.2
38 Valencene −8.5 −9.0 −5.6
39 Eremophyllene −9.1 −8.9 −5.5
40 γ-Cadinene −8.6 −8.6 −5.5
41 7-epi-α-Selinene −8.3 −8.8 −5.4
42 δ-Cadinene −8.8 −9.0 −5.4
43 Spathulenol −8.6 −8.6 −5.4
44 β-Caryophyllene oxide −8.1 −8.3 −5.5
45 T-Cadinol −8.5 −8.8 −5.4
46 δ-Cadinol −8.4 −8.8 −5.4
47 Patchoulol −7.8 −8.6 −5.2

Values are listed as a three-colored scheme from red (high energy) to green (low energy).
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Table 3. Average molecular docking results for the 47 compounds of VPEO regarding the M2 and
M3 Muscarinic Acetylcholine Receptor and Cav1.2 (L-type VGCC). Intermolecular docking energy
values (∆Ebinding), Ligand Efficiency (LE), and normalizing binding energy (IEnorm.binding).

Proteins
¯
X∆Ebinding

(kcal·mol−1)

¯
XLE

(kcal·mol−1)

¯
XIEnorm.binding
(kcal·mol−1)

M2 Muscarinic Acetylcholine Receptor −7.67 0.55 −2.06
M3 M3 Muscarinic Acetylcholine Receptor −8.03 0.58 −2.15

Cav1.2 (L-type VGCC) −5.11 0.37 −1.37

Molecular docking analyses, Kd values, Ligand Efficiency (LE), Binding Efficiency
Index (BEI), Lipophilic Ligand Efficiency (LLE), and normalization of the binding energy
score based on the number of non-hydrogen atoms (IEnorm.binding) are summarized in Table 4
for the top 12 (M2 Muscarinic Acetylcholine Receptor) and 11 (M3 Muscarinic Acetylcholine
Receptor) compounds, of which the most abundant compounds found in the VPEO are
presented. The results showed that approximately 60% of the VPEO compounds acted
as potential blockers of M2 and M3 Muscarinic Acetylcholine Receptors. In contrast, the
others showed higher values and were considered weak blockers with low activity for the
other protein target Cav1.2 (L-type voltage-gated calcium channel).

Table 4. Molecular docking results from the best compounds of VPEO regarding the M2 Muscarinic
Acetylcholine Receptor and M3 Muscarinic Acetylcholine Receptor with the major constituents of
VPEO. Intermolecular docking energy values (∆Ebinding), Kd values, Ligand Efficiency (LE), Bind-
ing Efficiency Index (BEI), Lipophilic Ligand Efficiency (LLE), and normalizing binding energy
(IEnorm,binding) for the complexes.

N◦ Components
∆Ebinding

(kcal·mol−1)
Kd

LE
(kcal·mol−1)

BEI
(kDa)

LLE
IEnorm.binding

(kcal·mol−1)
M2 M3 M2 M3 M2 M3 M2 M3 M2 M3 M2 M3

24 α-Cubebene −8.5 −9.0 5.90 × 10−7 2.54 × 10−7 0.60 0.60 30.5 32.3 2.0 2.3 −2.2 −2.3
27 β-Patchoulene −9.1 −9.4 2.14 × 10−7 1.29 × 10−7 0.61 0.63 32.6 33.7 2.1 2.3 −2.3 −2.4
28 β-Bourbonene −8.9 −9.1 3.00 × 10−7 2.14 × 10−7 0.59 0.61 31.9 32.6 2.3 2.4 −2.3 −2.3
30 β-Caryophyllene −9.0 −9.1 2.54 × 10−7 2.14 × 10−7 0.60 0.61 32.0 32.3 1.8 1.9 −2.3 −2.3
31 Seychellene * −7.9 −8.4 1.62 × 10−6 6.98 × 10−7 0.53 0.56 28.3 30.1 1.4 1.7 −2.0 −2.2
32 α-Guaiene −8.6 −9.0 4.98 × 10−7 2.54 × 10−7 0.60 0.60 30.8 32.3 1.6 1.9 −2.2 −2.3
33 α-Humulene * −8.6 −9.1 4.98 × 10−7 2.14 × 10−7 0.57 0.61 30.8 32.6 1.3 1.6 −2.2 −2.3
35 α-Patchoulene * −8.3 −8.7 8.26 × 10−7 4.21 × 10−7 0.55 0.58 29.8 31.2 1.7 2.0 −2.1 −2.2
36 γ-Muurolene −9.1 −9.2 2.14 × 10−7 1.81 × 10−7 0.61 0.61 32.6 33.0 2.1 2.2 −2.3 −2.4
38 Valencene −8.5 −9.0 5.90 × 10−7 2.54 × 10−7 0.60 0.60 30.5 32.3 1.5 1.9 −2.2 −2.3
39 Eremophyllene −9.1 −8.9 2.14 × 10−7 3.00 × 10−7 0.60 0.60 32.6 31.9 1.9 1.8 −2.3 −2.3
42 δ-Cadinene −8.8 −9.0 3.55 × 10−7 2.54 × 10−7 0.60 0.60 31.6 32.3 1.7 1.9 −2.3 −2.3
47 Patchoulol * −7.8 −8.6 1.92 × 10−6 4.98 × 10−7 0.49 0.54 25.7 28.3 2.1 2.7 −2.0 −2.2

* Represent the major constituents of the VPEO.

VPEO compounds obtained from molecular docking (see Table 4) displaying more
binding potential to M2 Muscarinic Acetylcholine Receptor were β-patchoulene,
β-caryophyllene, γ-muurolene, and eremophyllene, while for the M3 Muscarinic Re-
ceptor were α-cubebene, β-patchoulene, β-bourbonene, β-caryophyllene, α-guaiene, α-
humulene, γ-muurolene, valencene, and δ-cadinene, all obtained ∆Ebinding values (<−9.0)
and IEnorm, binding values (<−2.2), representing those with the highest interaction with
residues close to the active site. In addition, the binding energies were evaluated for the
major VPEO compounds, including natural sesquiterpenes such as α-patchoulene (5.8%),
α-humulene (6.1%), seychellene (7.6%), and patchoulol (20.8%).(Detailed values of the
interactions between individual compounds of the essential oil and the mentioned targets
can be found supplementary materials)

Table 5 lists the non-covalent interactions present in the M2-ligand complex. The
four best compounds, β-patchoulene, β-caryophyllene, γ-muurolene, and eremophyllene,
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identified by molecular docking presented weak Van der Waals-type and π–alkyl interac-
tions (see Table 5 and Figure 7) with the binding site of M2, where the most representative
residues were Ala191, Ala194, Cys429, Phe181, Trp155, Trp400, Tyr104, and Tyr403. On
the other hand, for the major VPEO compounds (see Table 5 and Figure 7), α-patchoulene,
α-humulene, seychellene, and patchoulol had similar interactions of weak Van der Waals-
type and π–alkyl interactions with the binding site of M2, where the most representative
residues of these interactions are Ala191, Ala194, Phe181, Trp155, Trp400, Tyr104, and
Tyr403. However, patchoulol has a hydrogen bridge interaction between the hydroxyl
group and Asn404, forming a favorable interaction in the binding of this compound by M2.

Table 5. Amino acid residues of M2 Muscarinic Acetylcholine Receptor (M2R) and hydrogen bonding
with the VPEO molecules within a distance of 3.5 Å.

Interacting Amino Acids in the Binding Pocket of M2R

Compound Amino Acids (Distance in Å)

β-Patchoulene
Ala194 (5.43), Cys429 (4.53), Tyr104 (3.57), Phe195 (5.17), Trp400 (4.62), Tyr403 (3.77),
Tyr426 (4.49).

β-Caryophyllene Ala194 (3.83), Tyr104 (4.57), Trp155 (4.66), Trp400 (5.29), Tyr403 (4.51).

Seychellene *
Ala191 (4.22), Ala194 (4.77), Tyr104 (3.99), Trp155 (4.75), Phe181 (4.97), Trp400 (4.90),
Tyr403 (4.86).

α-Humulene * Ala194 (5.44), Tyr104 (4.80), Trp400 (5.20), Tyr403 (4.78).
α-Patchoulene * Cys429 (5.17), Tyr104 (5.14), Phe181 (5.46), Trp400 (4.90), Tyr403 (5.38).

γ-Muurolene
Ala191 (5.19), Ala194 (4.98), Cys429 (5.20), Tyr104 (5.04), Phe181 (4.80), Phe195 (5.25),
Trp400 (5.20), Tyr403 (4.43), Tyr426 (4.70).

Eremophyllene
Val111 (5.15), Ala194 (3.92), Tyr104 (5.15), Trp155 (4.26), Trp400 (5.09), Tyr403 (4.12),
Tyr426 (4.44).

Patchoulol *
Asn404 (2.08) **, Ala191 (3.97), Ala194 (4.31), Tyr104 (4.26), Trp155 (4.18), Phe195
(4.82), Trp400 (4.86), Tyr403 (4.90).

* Represent the major constituents of the VPEO. ** Represent H-bonds.

To extend the analysis, we focused on all possible protein–ligand interactions in the
set of the best eight (identified by molecular docking) and the major VPEO compounds
that interact with the M3 Muscarinic Acetylcholine Receptor binding site (Table 6). These
interactions define an interaction framework for the ligands in the analyzed set.

Table 6. Amino acid residues of M3 Muscarinic Acetylcholine Receptor (M3R) and hydrogen bonding
with the VPEO molecules within a distance of 3.5 Å.

Interacting Amino Acids in the Binding Pocket of M3R

Compound Amino Acids (Distance in Å)

α-Cubebene
Trp503 (3.65), Ala235 (4.43), Ala238 (4.30), Cys532 (3.89), Tyr148 (5.34), Trp199 (4.60),
Trp503 (4.59), Tyr506 (4.85).

β-Patchoulene
Tyr506 (2.76), Ala238 (3.96), Cys532 (4.04), Tyr148 (3.64), Phe239 (5.47), Trp503 (4.39),
Tyr506 (5.02).

β-Bourbonene Ala235 (4.36), Ala238 (4.16), Cys532 (4.77), Tyr148 (5.22), Trp503 (5.24), Tyr506 (4.78).

β-Caryophyllene
Ala238 (4.70), Val155 (4.08), Tyr148 (5.18), Trp199 (4.23), Trp503 (4.88), Tyr506 (4.25),
Tyr529 (5.34).

Seychellene * Ala235 (4.08), Ala238 (3.79), Tyr148 (4.35), Trp199 (4.21), Trp503 (4.04), Tyr506 (4.77).

α-Guaiene
Trp503 (3.71), Ala235 (3.68), Ala238 (5.23), Cys532 (4.46), Val510 (4.30), Tyr148 (5.06),
Trp199 (5.05), Trp503 (4.47), Tyr506 (4.23).

α-Humulene * Ala235 (3.97), Cys532 (3.57), Val155 (4.38), Trp503 (3.59), Tyr506 (3.87), Tyr529 (4.68).
α-Patchoulene * Tyr506 (2.57), Cys532 (4.03, Tyr148 (4.16), Trp503 (4.19), Tyr529 (4.19).
γ-Muurolene Cys532 (4.01), Tyr148 (3.73), Trp199 (5.01), Trp503 (4.31), Tyr506 (4.37), Tyr529 (4.69).

Valencene
Ala238 (3.94), Cys532 (4.43), Val155 (4.14), Tyr148 (4.10), Trp199 (4.40), Trp503 (5.17),
Tyr506 (4.32), Tyr529 (4.76).

δ-Cadinene
Ala235 (3.67), Ala238 (4.65), Cys532 (3.62), Tyr148 (5.36), Trp199 (5.46), Trp503 (4.34),
Tyr506 (5.01).

Patchoulol *
Asn507 (2.58) **, Ala235 (3.83), Ala238 (3.61), Tyr148 (4.54), Trp199 (4.64), Phe239
(5.23), Trp503 (4.40), Tyr506 (4.66).

* Represent the major constituents of the VPEO. ** Represent H-bonds.
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Figure 7. Non-covalent interactions analysis for the best four compounds (β-patchoulene, β-
caryophyllene, γ-muurolene, and eremophyllene,), and major constituents of the molecular dock-
ing of VPEO (α-patchoulene, α-humulene, seychellene, patchoulol) bound to M2 muscarinic
acetylcholine receptor.

Figure 8 shows the non-covalent interactions present in the M3-ligand complex. The
five best compounds, such as α-cubebene, β-patchoulene, β-bourbonene, β-caryophyllene,
α-guaiene, γ-muurolene, valencene, and δ-cadinene, found by molecular docking present
weak Van der Waals-type and π–alkyl interactions with the aromatic binding site of M3,
where the most representative residues are Tyr506, Tyr148, Phe239, Trp503, Tyr506, Trp199,
and Tyr529. On the other hand, the major constituents of the VPEO as α-patchoulene,
α-humulene, seychellene, and patchoulol, had similar interactions of weak Van der Waals-
type and π–alkyl interactions with the aromatic binding site of M3, where the most rep-
resentative residues of these interactions are Ala235, Cys532, Val155, Trp503, Tyr506, and
Tyr529. However, patchoulol has a hydrogen bridge interaction between the hydroxyl
group and Asn507, favoring the potential binding of this compound to M3.
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patchoulene, β-bourbonene, β-caryophyllene, α-guaiene, α-humulene, γ-muurolene, valencene,
and δ-cadinene), and major (α-patchoulene, α-humulene, seychellene, patchoulol) constituents of the
molecular docking of VPEO bound to M3 muscarinic acetylcholine receptor.

4. Discussion

Essential oils are gaining interest due to their intricate chemical composition and di-
verse pharmacological effects. Among these actions, the antispasmodic effect is well known,
although further research is required to better understand the cellular and molecular mech-
anisms of action [41]. Therefore, we studied the antispasmodic effect of Valeriana pilosa root
essential oil (VPEO) and its underlying mechanisms of action using the isolated rat ileum
ex vivo model. Our findings reveal that VPEO displays spasmolytic and antispasmodic
effects in a dose-dependent manner at concentrations ranging from 100 to 1000 µg/mL. The
relaxant activity of VPEO in the isolated rat ileum was reversible after washing, indicating
that the inhibition observed was not attributable to intestinal damage caused by the oil’s
interaction with cell lipid bilayers [42].
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Smooth muscle excitation and contraction in response to acetylcholine (ACh) release
from autonomic nerves primarily involve the activation of muscarinic acetylcholine re-
ceptors (mAChRs) in the gastrointestinal tract and many other visceral organs [43]. The
mAChR family comprises five molecularly distinct subtypes: M1–M5 [44]. Smooth muscle
mAChRs consist of M2 and M3 subtypes, with M2 being predominant
(M2:M3 = 3–5:1) [43,45], although all five mAChR subtypes have been detected in the
gastrointestinal smooth muscle at the mRNA level [46].

Activation of mAChRs triggers multiple biochemical and electrical signaling events
that result in muscle contraction [47]. Our results demonstrated that VPEO, at a concentra-
tion of 250 µg/mL, reduced tonic contraction in ACh-precontracted tissues. Additionally,
preincubation of intestinal tissues with VPEO (250 µg/mL) significantly reduced the pEC50
of the tissue to ACh, as evidenced by a rightward shift in the dose–response curve. These
initial findings suggest that VPEO blocks muscarinic receptors involved in rat ileum con-
traction. To explore this hypothesis, we evaluated whether the presence of muscarinic
antagonists such as atropine, hyoscine butylbromide, and solifenacin would attenuate the
relaxing effect of VPEO. Our results showed that solifenacin, a selective blocker of M3 mus-
carinic receptors, slightly reduced the relaxation induced by VPEO, but not significantly.
In contrast, hyoscine butylbromide, an M2–M3 muscarinic blocker, significantly reduced
the relaxing effect of VPEO. Moreover, when the non-selective muscarinic blocker atropine
was employed, the relaxing effect of VPEO on muscle tone in the rat ileum was further
reduced. Traditional studies using various mAChR antagonists have suggested that the
M3 subtype primarily mediates contraction in visceral smooth muscles, while the contri-
bution of the M2 subtype remains less clear [48,49]. However, other investigations have
demonstrated that the M2 subtype modulates contraction, at least in part, by inhibiting
cyclic AMP (cAMP)-dependent relaxation [43] and regulating smooth muscle ion channel
activity [50–52]. Nevertheless, the precise mAChR subtype that mediates the contractile
response remains largely unknown. Our findings indicate that, in addition to blocking
M3 receptors, the antispasmodic effect of VPEO also involves modulation of M2 receptors.
Consequently, both experimental and theoretical outcomes reveal the impact of VPEO on
M2 and M3 muscarinic receptors.

There is limited research available on the effects of essential oils on cholinergic recep-
tors expressed in smooth muscle, and a few studies have been published [6]. Molecular
interactions between essential oil terpene compounds, such as vanillin, pulegone, eugenol,
carvone, carvacrol, carveol, α-terpineol, thymol, thymoquinone, menthol, menthone, men-
thone, limonene, and nicotinic cholinergic receptors have been reported [53–55].

High concentrations of potassium ions (hypermolar KCl) cause tonic contraction
of smooth intestinal muscles by a mechanism that depends on extracellular calcium
influx [56,57]. Our study demonstrated that increasing concentrations of VPEO reduced
contractions induced by 60 mM KCl. Additionally, when the tissue was pre-incubated for
20 min with the essential oil, the dose–response curves in response to KCl were significantly
reduced. The action of VPEO can be attributed to its major component, patchouli alcohol
(20.8%), a tricyclic sesquiterpene that has displayed similar results in other types of smooth
muscle, such as the aorta [58] and rat corpus cavernosum [59]. However, the synergistic
effects of other VPEO components, such as α-patchoulene (5.8%), α-humulene (6.1%), and
seychellene (7.6%), at lower concentrations cannot be rejected.

Furthermore, it was confirmed that the relaxation induced by VPEO was reduced
in the presence of verapamil, a voltage-gated calcium channel blocker. These results are
consistent with similar studies conducted on the rhizome of Valeriana hardwickii Wall,
which caused a rightward shift in calcium concentration-response curves in the rabbit
jejunum, similar to that caused by verapamil [60,61]. The findings from our study on VPEO
suggest the presence of an antispasmodic effect potentially mediated through calcium
channel blockade.

It has been shown that ATP-sensitive potassium (KATP) channels regulate intestinal
contractility [28]. These channels are heterooctameric proteins composed of pore-forming
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subunits of the inwardly rectifying K+ channel (KIR) and subunits of the sulfonylurea
regulatory receptor (SUR). The data demonstrate decreased intrinsic basal contractility
in the small intestine and colon due to increased basal KATP channel activity, which can
be inhibited by glibenclamide, an ATP-sensitive K+ channel blocker [62], and BaCl2, an
inward rectifier K+ channel blocker [63,64]. We observed that VPEO reduced BaCl2-induced
contractions, shifting the dose–response curve to the right, suggesting that VPEO might
activate K+ channels, similar to the crude extract of Valeriana wallichii, which displays
antispasmodic activity mediated by activation of the KATP channel [65]. To confirm these
results, tissues were pre-incubated with glibenclamide and BaCl2, and the relaxing effect of
VPEO on basal tone was evaluated. Our results showed that the activation of KATP and KIR
channels did not produce the relaxation exhibited by VPEO in the rat ileum.

The monoterpenoid group, including compounds such as α-pinene, myrcene, limonene,
p-cymene, 1,8-cineole, camphor, carvone, α-humulene, and spathulenol isolated from ter-
restrial plants, represents the chemical group with the highest number of antispasmodic
compounds [66], which are also present in VPEO.

It is important to mention that several studies have shown that phytochemical analysis
of essential oils from numerous plants can induce relaxation in smooth muscle across
various animal species, which is often attributed to their antioxidant activity and ability to
enhance gut and barrier function in animals [6,49,67]. Terpenes have been demonstrated
to enhance gut microbiota, such as D-limonene [68,69], suggesting that this could be a
possible explanation for how essential oils produce a calming effect on the gut.

In summary, our study provides experimental evidence showing antispasmodic prop-
erties of VPEO. Future in vivo experiments evaluating the effect of VPEO on the intestinal
microbiota or determining optimal dosage are required to obtain more clues into the
potential use of VPEO as a new pharmacological approach for treating muscle spasms.

5. Conclusions

The findings obtained from this study on Valeriana pilosa essential oil (VPEO) un-
equivocally demonstrated its spasmolytic and antispasmodic effects in rat ileum. In silico
and pharmacological analyses suggest that VPEO exerts its actions through blockade of
muscarinic receptors and calcium channels. Collectively, these outcomes provide molecu-
lar insights that shed light on the traditional utilization of this plant for the treatment of
gastrointestinal disorders.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/pharmaceutics15082072/s1, Table S1. ∆Ebinding (kcal·mol−1),
Kd, LE (kcal·mol−1), BEI(kDa), LLE, IEnorm,binding (kcal·mol−1) obtained after molecular docking be-
tween Valeriana pilosa essential oil compounds and M3 Muscarinic Acetylcholine Receptor (PDBID:
4DAJ). Table S2. ∆Ebinding (kcal·mol−1), Kd, LE (kcal·mol−1), BEI(kDa), LLE, IEnorm,binding (kcal·mol−1)
obtained after molecular docking between Valeriana pilosa essential oil compounds and M2 Mus-
carinic Acetylcholine Receptor (PDBID: 3UON). Table S3. ∆Ebinding (kcal·mol−1), Kd, LE (kcal·mol−1),
BEI(kDa), LLE, IEnorm.binding (kcal·mol−1) obtained after molecular docking between Valeriana pilosa
essential oil compounds and L-type voltage-gated calcium channel (PDBID: 5V2P). Table S4. Percent-
age composition of the essential oil isolated from Valeriana pilosa. Table S5. Smiles for all compounds
in Valeriana pilosa essential oil.
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