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Abstract: Energy poverty, considered a form of deprivation distinct from income poverty, is associated
with three factors: low-income levels, high energy costs, and poor residential energy efficiency. It
is necessary to study the socio-spatial distribution of energy poverty, particularly in metropolitan
areas, due to persistent socioeconomic segregation and their public agenda implications, including
the U.N. SDGs. A model of these characteristics can propose a spatial analysis of urban and climate
implications, contributing evidence for public policy. This article aims to address energy poverty from
a spatial approach extended to the urban area in Santiago de Chile through an exploratory model
that estimates the impact of socioeconomic, urban, and climatic variables at a territorial scale on the
performance of homes. Using a geographical weighted regression with the inside home temperature
in winter as the dependent variable, the independent variables were the percentage of professionals,
NDVI, annual thermal amplitude, and housing material quality. A housing quality pattern that acts
as a proxy for vulnerability to energy poverty was found, repeating the distribution pattern of the
different socioeconomic sectors. The findings incorporate a new interpretive matrix into the complex
reproduction of segregation and inequality in a capital city from a developing country.

Keywords: energy poverty; spatial analysis; segregation; GWR

1. Introduction
1.1. Energy Poverty Conceptualisations for a Developing Context

In recent decades, the notion of energy poverty has been occupying a place of increas-
ing relevance in public discussion, not only in association with issues directly related to
energy but also constituting a broad approach capable of integrating areas such as social
protection, public health, access to housing, and climate change [1–3]. Energy poverty,
considered a form of deprivation distinct from income poverty [4], was initially defined
as the inability (of a household) to spend more than 10% of their income on energy [5].
Although this criterion continues to guide public policy in most European countries and
the United Kingdom [6], alternative measures have been developed, such as the “Low
Income-High Cost” [7] or the “Minimum Income Standard” [8]. These and other commonly
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used definitions have often associated energy poverty with three main factors: low-income
levels, high energy costs, and poor residential energy efficiency [9].

One of the literature’s most accepted conceptualizations of energy poverty is that
of González-Eguino [10] who identifies physical, technological, and economic thresholds.
These thresholds are echoed in two of the three dimensions proposed by the Energy Poverty
Network (Red de Pobreza Energética, RedPE), an academic collaboration platform founded
in Chile and with scope in the Latin American region. The physical and technological
thresholds are grouped under the dimension of “access” since they consider that geo-
graphic and infrastructure constraints limit a household’s energy supply. In contrast, the
economic thresholds are associated with the dimension of “equity”, associated with the
energy expenditure of homes relative to their total budget and the consequent difficulty in
achieving adequate energy sources and thermal comfort [11]. This definition is particularly
relevant when tackled by some of the sustainable development goals (SDGs) promoted
by the United Nations. In particular, target 1.4., in terms of “equal rights to economic
resources, as well as access to basic services”, and target 7.4, expressed as “ensure universal
access to affordable, reliable and modern energy services” [12], appear consistent to the aim
of overcoming energy poverty. This relationship is crucial since it articulates international
agendas with direct implications for national public policies, such as the Chilean energy
policy [13].

However, when considering a more comprehensive definition of energy poverty, the
problems associated with the “quality” of energy should also be included, considering
both the sources of energy and equipment and the housing conditions and security of the
electricity supply. In this context, the indicators associated with the dimension of “quality”
of energy are usually not visible in the literature, either because they address energy
poverty from the absolute lack of access to essential energy services (often associated with
poorer countries) or from the high cost of such access (which would be more relevant in the
context of developed countries [14,15]. Similarly, a recent economic analysis that included
37 countries showed that the affordability dimension of energy poverty (in contrast with
accessibility) was significantly greater in those countries—like Chile—that had a medium
level of economic development, along with considerable income inequality [16].

In this context, the study of energy poverty has a unique characteristic: it is spatially
and territorially located. In effect, the condition of energy poverty itself has been defined as
having “highly geographically variable and locally contingent” [17], which suggests strong
urban and social implications. Stefan Buzar indicated how free-market policies contra-
dicted a planning state, which led to deprivation in households under climate change [18],
given that, in general, urban policies in the neoliberal era ignored the complexities of
each territory. On this problem, Primc, Slabe-Erker, and Majcen argued that the effects
of macroeconomic factors on energy poverty were underestimated and far from being
effectively integrated into the analyses that seek to influence public policy. Indeed, these
impacts are usually based on microeconomic factors, thus leading to incorrect diagnoses
of the socio-spatial configurations of each territory [19]. In this scenario, the literature
that reviews scalar relationships at the urban level of energy poverty is very scarce. An
urban-territorial approach to the problem in the specific case of Santiago could add a new
interpretive layer to the idea of precariópolis for this city, thereby complementing the factors
that provide information regarding the issue of energy poverty. According to Hidalgo et al.,
this concept can be understood in the context of prominent Latin American cities as a result
of the action of the State in their housing projects, generating a “monofunctional, segregated
and fragmented space” which includes urbanization services (e.g., electricity, drinking
water), but lacks other social classes, equipment and essential services (e.g., schools, health
centers, recreation areas and shopping centers, among others) [20]. Also, energy poverty is
another socio-spatial representation of income inequality, as Kocak and Baglitas explain [21].
Guzman-Rosas found evidence of the prevalence of energy poverty within indigenous
settlements in Latin America, providing an ethnic approach to this thematic field of anal-
ysis [22]. Although off-grid cities are presented as alternatives to energy poverty in the
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Global South, those approaches may also reproduce inequalities in practice without a criti-
cal stance on these ways of urbanization [23]. As Croce and Tondini point out, under the
rapid urbanization process, where the world is facing the measurement of climatic effects
on urban areas demands the exploration of spatial methods to tease out the way cities
are socially affected by climate change [24], with emphasis on the inequalities of energy
poverty. Bouzarovski situates the problem as political ecology, wherein contradictions
collapse when economic affairs clash with climate and energy circulations [25]. Innovative
approaches have been taken to understand energy poverty. For instance, Alabi et al. used
satellite night lights to investigate access to electricity in Nigeria, finding scarce progress
in some areas of the country [26]. As Munro and Samarakoon illustrate, as the market
becomes involved in the scene for relieving energy poverty, geographies of inequality
become activated [27], as energy poverty is a social product following the direction given
by the State to define where energy poverty occurs and where it does not [28]. Birsanuc
takes an approach to gender inequalities to analyze the case of Romania [29]. Most studies
focus on the general effects of energy poverty, embracing an approach related chiefly to the
political economy understanding of the issue. In this case, we focused our research on the
spatial effects occurring in South America as an under-studied region under this approach.

Because of this, it is necessary to study the socio-spatial distribution of energy poverty;
an issue addressed only recently by the literature [30–32] and which is of particular interest
in metropolitan areas due to the persistent residential socioeconomic segregation that
defines housing production and energy consumption patterns [33]. This article aims to
address energy poverty from a spatial approach extended to the urban area through an
exploratory model that estimates the impact of socioeconomic, urban, and climatic variables
at a territorial scale on the performance and comfort of homes at a domestic scale.

1.2. The Territorial Scale in the Study of Energy Poverty

The study of energy poverty from a geographical spatial approach has been devel-
oped to identify spatial distribution patterns in areas with greater vulnerability to this
phenomenon. This situation has been analyzed by mapping data related to different
degrees of spatial precision and information on socioeconomic conditions, energy consump-
tion, and housing materiality. This approach is based on different perspectives to tackle
energy poverty in urban studies [34–40]. For the Latin American region, García-Ochoa
and Graizbord performed a logistic regression to identify clusters of energy poverty [41]
and Pérez-Fargallo et al. elaborated a climate-based energy poverty potential evaluation
indicator [42].

In methodological terms, spatial regression models have revealed areas vulnerable to
energy poverty with different degrees and scales of precision and the different explanatory
variables linked to socioeconomic, urban, and climatic conditions. In this sense, there are a
series of recent studies that generally integrate an initial statistical analysis employing an
ordinary least squares regression (OLS) to identify multicollinearity between the different
independent variables and subsequently a geographical weighted regression (GWR) analy-
sis to find independent variables linked to socioeconomic, urban, and climatic conditions.
Among these, Mashoodi develops the relationship between the land surface temperature
(LST) and its impact on the energy expenditure of homes [43]; Chen et al., together with
the already mentioned LST, incorporate indicators of urban morphology and land use to
explain the demand for urban energy in Eindhoven, Holland [43]; Meng et al., analyse the
relationship between the social conditions of urban vegetation and public space—including
occupation and inequality—with urban poverty [44]; Shaker et al. relate urban design
characteristics with the average night-time temperature under urban heat island (UHI)
conditions in New York City [45]; Tu et al. reveal links between urban landscape patterns
and PM2.5 pollution at different scales in China [46] and finally, Moore and Webb highlight
the enormous importance of sociodemographic variables, particularly race, in explaining
the proportion of household energy expenditures in the city of Cincinnati in the U.S. [40].
Part of the recent interest in these spatial analysis tools lies in the idea that generalizing a
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territory does not capture the heterogeneous socio-spatial vulnerabilities that increase the
probability of energy poverty experienced between different demographic and geographi-
cal contexts [47]. As such, it has been shown how spatial models—the GWR mentioned
above, or Multiscale Geographical Weighted Regression (MGWR)—over nonspatial models
(OLS) better fit the prediction associated with the definitions of energy poverty [30]. How-
ever, the GWR method requires controlling for variables that are directly autocorrelated
or have dichotomous or scaled explanatory variables, which should be considered when
analyzing the results of the above model in order to stabilize the results.

The paper is organized as follows. First, there is a description of the applied method-
ology, followed by the presentation of the results, including a detailed explanation of the
Santiago Metropolitan area’s urban zones. Finally, the discussion and conclusions highlight
the contributions to public policy.

2. Methodology
2.1. Study Design

This article is structured around two methodological approaches associated with
spatial statistics, which appeared in the literature discussion: (1) regression-associated
multicollinearity analysis (OLS) and (2) geographically weighted regression (GWR) analysis,
of which the data flows are presented as a diagram in Figure 1. These are complemented
with some prior statistical significance and multiple collinearity analyses, allowing variables
that could be highly correlated with each other to be grouped.
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First, an OLS analysis was performed using a simple linear regression model, revealing
the relationships between the dependent and independent variables. The applied tech-
nique establishes a preliminary analysis of multiple multicollinearities to eliminate those
individual collinear variables. Since their distributions were normal, it was determined
not to perform a normalization or linearization of the data. We restricted the application of
an exploratory regression to limit the number of variables to be standardized. The multi-
collinearity analysis will account for certain variables that should not be added to the model
since they repeat explanatory statistical arguments with other pairs of variables, inflating
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the predictive variance of the model. This situation is complemented with exploratory
analysis based on the combinatorics of the dependent variable and the set of variables
already mentioned.

Simple linear regression models are used as a precedent for applying geographically
weighted regressions. This finding receives methodological support because the spatial
behavior of these variables (urban and environmental) has a certain degree of spatial
autocorrelation. However, some relationships differ depending on the spatial scale. The
GWR can exploit this situation by applying local regressions [48]. It should be noted
that through the standard deviations of the residuals, differentiated explanations will
be explored according to the territorial patterns that can be obtained. In addition, the
model will be validated from the perspective of local multicollinearity from the analysis of
conditions, and other spatial statistics (such as the Moran Index) will be analyzed to ensure
the consistency of the results.

2.2. Methodological Limitations

One of the most relevant issues in interpreting GWR results is the amount of data
incorporated in the bandwidth and the consequent weight of the observations. With a
deficient number of observations, the coefficients become unstable, and the graphical
interpretation of the coefficients becomes more complex. In addition, the distribution of the
data, especially the outliers, makes the interpretation more sensitive [49]. Another issue
is the heteroscedasticity of the residuals when there is a high spatial autocorrelation in
the base data of the model, with some seasonality. This situation represents a problem in
interpreting such models. One way to control this would be to analyze the residuals using
a Moran index or an eigenvector filtering analysis [50].

These considerations require an unambiguous definition of the input parameters and
the scope of conclusions about the model outputs. Despite all these limitations, the method
is considered a good exploratory approach, which should check for the elements mentioned
above to study urban poverty [51].

2.3. Case Study and Data

This article was developed in the context of the metropolitan area of Santiago de
Chile, which is composed of 40 communes and 1752 census tracts, with the main consoli-
dated urban area [52] consisting of 6,375,463 inhabitants, 2,144,706 homes, and an area of
83,789 hectares according to the 2017 census. The Gran Santiago can also be separated into
six urban areas, corresponding to a group of communes in their location to the city center
(Figure 2). As a capital city, it represents most of the economic and political power of the
country [53] and 35% of its total population. The current layout of the metropolis is the
product of a series of neoliberal reforms initiated in 1976 with the first tax exemptions for
the construction of housing and promoted by the national policy of urban development
of 1979 [54–56], which was consecrated under the constitutional definition of a subsidiary
State [57]. From that time to the present, a significant amount of evidence demonstrates the
generation of a highly segregated city in socio-spatial terms because of the real estate market
operating under a deregulated logic [58–62] and the current crisis in access to housing [63]
has gained validity. The communes and their census tracts are differentiated according to
geographic sectors to facilitate their interpretation consistent with this socio-spatial reading
of the city.
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Figure 2. Urban zones from the metropolitan area of Santiago de Chile.

At the national level, the environmental and climatic impacts on the city have been
extensively studied at a territorial scale—for example, the configuration of the urban heat
island in Santiago de Chile [64,65]—but less so on links with socio-spatial aspects [66].
In conceptual terms, the development of the notion of “territorial energy vulnerability”
by the RedPE [67] is a significant advance, though still lacking an empirical analysis that
allows the evaluation of the impacts of socioeconomic, urban, and climatic variables at the
territorial scale in terms of energy poverty.

For this, it is proposed to use the inside home temperature as a dependent variable for
the study, based on data from the National Monitoring Network (Red Nacional de Monitoreo,
RENAM) of the Ministry of Housing and Urbanism [68] (Figure 3). Unlike most of the
previously cited studies, which focused on the energy consumption of homes, indoor
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temperature was chosen for several reasons: (i) it is a sensitive indicator associated with
territorial energy vulnerability and particularly its impacts on health [69]; (ii) it is a variable
closely associated with quality of life that accounts for socioeconomic inequalities [70];
and (iii) because it is not an entirely strong argument to focus on energy expenditure in a
context characterized by being under conditions of “hidden energy poverty”. This situation
is described as insufficient energy expenditure relative to the minimum necessary to meet
energy needs [71] and is particularly complex since it is likely that many households are
forgoing their unmet energy needs to meet other more pressing needs [72].
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As independent variables, a series of indicators accounted for socioeconomic, urban,
and climatic conditions at the territorial scale, according to their availability from official
secondary sources. These were developed by the Observatory of Cities U.C. [73] from
census databases [74], from the Internal Revenue Service and real estate supply, plus
information on communal regulatory plans and Landsat 8 satellite images [75]. Since
the year in which the most RENAM temperature records could be obtained was 2017, all
independent variables were adjusted for this period. Consequently, these variables were
defined as follows (Figure 4):

• Socio-Material Territorial Indicator (SMTI): a supra-variable that is constructed from
four census indicators with territorial specificity: head of household education index,
housing material quality index, overcrowding index, and doubled-up household
index [76]. It is important to note that in Chile, the income variable only exists in the
CASEN survey (“National Socioeconomic Characterization” in Spanish), which is not
representative at detailed scales (regional, city and, in some cases, commune). Due
to this, proxy indicators, such as the SMTI, have been historically used to represent
socioeconomic conditions.

• The diversity of land uses is defined through the Shannon index. This indicator
measures variety, in this case of land use, contrasting proportional uses for a given
spatial unit. A value close to −2 indicates more significant use heterogeneity, typical
of centralities and sub-centralities. When the indicator is close to 0, only one land-use
type usually corresponds to residential areas.

• Land price values
• Percentage of professionals, according to the general categories of the International

Standard Classification of Occupation (ISCO) [77].
• Demographic indicators, such as households with and without children.
• Average year of construction.
• Indicator of housing material quality.
• Land surface temperature (LST).
• Annual thermal amplitude is the difference between the maximum and minimum

temperatures in a year and is obtained according to satellite imagery.
• According to satellite imagery, the normalized difference vegetation index (NDVI)

indicates total green areas (public and private).
• Urban segregation is defined according to the Theil index. This indicator calculates

entropy as a measure of segregation [78], in this case, considering the internal pro-
portion of the census tracts according to the value of the SMTI (socioeconomic proxy
indicator) and weighting it with the comparison between the census tracts and their
contiguous zones (topological matrix of spatial weights).

• Percentage of houses vs flats in new projects.
• Regulatory indicators include occupancy coefficients, construction indices, and

maximum heights.
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ues, used in the models to explain the inside temperature of homes in the metropolitan area of
Santiago: (a) SMTI; (b) land-use heterogeneity; (c) percentage of professionals; (d) percentage of
households without children; (e) 2017 annual thermal amplitude; (f) 2017 winter LST; (g) 2017 NDVI;
(h) percentage of flats; and (i) average values of land prices expressed in US$/m2.

3. Results
3.1. Model Selection

The survey of independent variables yielded a total combinatorial of 637 models,
which is technically and conceptually not attainable, so alternatives were narrowed down
by combining two techniques of exploratory statistical data analysis: (1) Multiple correlation
matrix, which eliminates collinear variables (prioritizing the elimination of collinearity and
thematic overlap between variables); (2) Exploratory regression to eliminate unfeasible
combinations and analyze biases and significance, among other key statistics. Some of these
are evident, like the annual thermal amplitude and the LST (since one is released from the
other). Others are expected but not obvious (the SMTI and the percentage of professionals,
the year of construction and the housing material quality indicator, mainly because they
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come from different databases). The criteria for defining candidate regressions and the
number of regressions that meet these parameters are detailed in Table 1.

Table 1. Percentage of accepted regressions according to search criteria.

Search Criteria Cut-Off Attempts Successes Percentage of
Correct Answers

R2 minimum >0.4 637 487 76.5%
p-Value <0.05 637 379 59.5%

VIF Value <7.50 637 637 100%
Jarque–Bera p-value >0.10 637 11 1.7%

The spatial autocorrelation of the regressions is not evaluated now, assuming that it is
measured in conjunction with the local multicollinearity when applying the geographically
weighted regressions. Of the 11 regressions used for the GWR, only four models pass the
local multicollinearity and spatial autocorrelation tests, integrating one to four independent
variables (Table 2).

Table 2. Description of the selected GWR models and their statistical indicators.

Model 1 Model 2 Model 3 Model 4

Dependent variable Inside temperature of homes in winter (year 2017)

Independent variables

NDVI Professional percentage Professional percentage Professional percentage
Land price Land price NDVI

Segregation Annual thermal amplitude
Housing material quality

R2 0.90 0.8801 0.6841 0.8891
Average conditions 7.2 6.39 23.30 26.33

Sigma 0.2726 0.3043 0.4946 0.0859

Of the alternatives presented, Model 4 is used based on a multivariate explanation:
(i) it has one of the highest coefficients of determination; (ii) it has the lowest sigma of all
the models, which accounts for a better overall fit; and (ii) unlike Model 3, which is the
multivariate model, it is easier to identify local explanations for the phenomena analyzed.
In contrast, the model with only NDVI (Model 1), although it has a good mathematical
performance when seeking local explanations, is not clear in all cases if it is the behavior
of an underlying variable or a product of local autocorrelation. Finally, although the
average conditions are higher, it is evident that better explanatory power is obtained in
a geographically weighted regression model with more variables, even with an average
of 26.33. The variables chosen are related to the energy poverty phenomenon and are
consistent with the spatial modelling. The materiality of the housing accounts for the
insulation problems in both summer and winter. Vegetation performs as an attenuator of
extreme temperature. However, its distribution is also related to the sociodemographic
composition, while the annual thermal amplitude is a proxy variable that directly affects
the variations of the dependent variable. It is relevant to note that the SMTI has not been
considered in any model since it presents collinearity with other variables (housing material
quality index and percentage of professionals). This situation may infuse noise into the
model through local multicollinearity. Therefore, including it as an explanatory variable
in the regression model is not helpful in this case, despite the lack of this variable in
providing substantial evidence. Nevertheless, in replacement for this lack, the percentage
of professionals was used, measured by the years of schooling, which is also the primary
constituent variable of the SMTI, having an average weight of around 78% in a performed
principal component analysis. By analyzing the results of the final model, some clear spatial
patterns can be established, as well as practical considerations concerning the statistics
generally produced by the model.
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3.2. Interpretation: Spatial Patterns of Energy Poverty in the Metropolitan Area of Santiago
de Chile

The first important aspect is that the model has a low sigma, so the high residual
standard deviations are referred to in this case as discrepancies of (+) (−) 1.4 ◦C. There is
some observable spatial autocorrelation which does not invalidate the model. However,
it would be advisable to have a sample with a higher level of the spatial grain of the
dependent variable, which would allow more in-depth observations, even more, detailed
than those that will be defined below, according to the different urban areas:

• Eastern Area: in Santiago’s metropolitan area, the higher income sectors are concen-
trated in “a sort of triangle that has one of its vertices in the commune of Santiago and
then stretches towards the northeast, covering a good part of the mountain slopes” [79].
The so-called “high-income cone” [80] has been characterized by processes of spa-
tial self-segregation [81]. In the model, it is expressed with a defined pattern to the
dependent variable. Here, there are high inside temperatures transversal to the com-
munes that compose it (Ñuñoa, La Reina, Providencia, Las Condes, Vitacura, and Lo
Barnechea). Specifically, the highest values occur in the eastern boundary of the com-
mune of Santiago, the northeastern zone of Ñuñoa, west of La Reina, the vast majority
of Providencia and Las Condes, the western sector of Lo Barnechea, and uniformly for
the entire commune of Vitacura (Figure 3). The general pattern is reinforced with the
four variables of the model. Still, specifically for the highest temperatures, the variables
that operate at the local level are the material of the home together with the annual
thermal amplitude. This situation is evident when observing the agglomeration of
high-temperature sectors in Santiago, which also coincides with the higher percentages
of professionals and a greater vegetation cover and green areas expressed in the NDVI
(Figure 5). In terms of standardized residuals, the most overestimated place is the
foothills of this high-income cone (expressed through lower temperatures in winter),
where the geographical factor prevails. The opposite case occurs in some vulnerable
enclaves of these communes where the percentage of professionals decreases as well
as the material quality of the homes. Still, the other environmental variables remain
constant, causing the model to underestimate the observations.

• Pericentral area: in the communes surrounding the center of the metropolitan area
of Santiago (Recoleta, Independencia, Quinta Normal, Estación Central and Pedro
Aguirre Cerda), there is a pattern of lower temperatures inside the homes in winter
compared to the center of the consolidated urban area (Figure 3). Two independent
variables mainly explain this: (1) the material quality of the housing is generally
precarious, associated in many cases with self-construction processes. This is also
reinforced with the second variable that, in this case, corresponds to the almost zero
presence of vegetation detected by the (2) NDVI indicator, a situation that is not only
expressed as access to public green areas but also more strongly as lack of public trees
and private vegetation (inside the home.) The exceptions for this spatial pattern are
expressed by the values overestimated by the model (higher temperatures) for part
of the commune of San Miguel (neighborhood known as the Llano Subercaseaux)
given its higher socioeconomic nature and the better-quality housing material. This is
because they are homes built with recent regulations, an urban renewal sector in the
verticalization process. The second milestone is the area around the Quinta Normal
urban park—a situation associated in this case with the presence of vegetation—which
should help mitigate temperatures, which does not occur as the model predicted.

• Northern area: the pattern of inside temperatures of the homes is slightly higher
than expected, given the characteristics of the socioeconomic vulnerability of the area,
combined with a low presence of vegetation and low material quality indices of the
home (Figure 5). This is mainly explained by the behavior of the thermal amplitude,
which determines the model in this extensive area of the metropolitan area of Santiago
(communes of Lo Prado, Cerro Navia, Renca, and Quilicura). The values of thermal
amplitude are the highest, which translates into higher maximum temperatures in
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summer. However, slightly higher minimum temperatures are also observed in winter,
which defines an extensive pattern of inside temperatures in homes somewhat higher
than the rest of the peripheral areas (but in this case, not due to housing material).

• Southern area: In terms of the dependent variable, the lowest temperature values
inside the homes during the winter occur in the communes of Maipú, Lo Espejo, San
Ramón, La Granja, La Florida, San Bernardo, La Pintana, and Puente Alto (Figure 3).
In this case, the lowest values of the four independent variables are combined to justify
the values observed and estimated by the geographically weighted regression model,
with extreme cases in particularly vulnerable areas, such as the Bajo de Mena sector,
south of the commune of Puente Alto.

Figure 5. Description of the independent variables in the selected model: (a) 2017 NDVI; (b) the
percentage of professionals; (c) 2017 annual thermal amplitude; (d) housing material quality index.
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3.3. Validation of the Model

In general, terms, the model applies very well given the equilibrium provided by hav-
ing a multivariate explanatory function (Figure 6). At the same time, the condition number,
which accounts for local multicollinearity, is below the limit of 30 in all the census tract
units, which shows the feasibility of the GWR model. This indicator is especially significant
considering that the dependent variable (indoor temperature of the houses) comes from
an interpolation. However, the standard deviation of the standardized residuals accounts
for better fits in some map locations (greater than 2.5 standard deviations correspond to
estimated differences versus the observed of only 1.4 ◦C) (Figure 7). With this, in terms of
methodological aspects, it is possible to affirm that local multicollinearity can be increased
slightly—consistently within the acceptable range of the GWR model—to obtain stronger
arguments for analyzing the results.
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In addition to this analysis, it is possible to observe the non-correlation between the
standardized residuals and the predicted values, which is essential to give reliability to the
model (Figure 8). In this sense, it is evident that a trend does not exist between the values
obtained from the model and the model errors.
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Additionally, traditional testing methods for the GWR model indicate the need to
examine the clustering level of the (unstandardized) residuals. It is assumed that when
there is a high Moran index, we have some unknown variables that should be explored
and considered for the model. For the Moran Index, a matrix of spatial weights of K
neighbors was used, the same as the regression neighborhood, to maintain the consistency
of the method (Figure 9). The result is indeed clustered but with a low Moran Index value,
indicating that the problems of the model are minor.
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4. Discussion

With the results presented, several lessons can be extracted that indicate, on the one
hand, the ability of the model to link a set of socioeconomic, urban, and climatic variables,
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allowing an interpretation based on energy poverty; on the other hand, as a model of
these characteristics, it can propose a spatial analysis of urban and climate implications,
contributing evidence to decision-making for public policy.

Strictly speaking, from the specificity of the GWR model, one can argue the need for
more precise global variables. An example is housing material. A specific definition of the
thermal envelope can be inferred but does not directly constitute this factor, presenting
the percentage of substandard housing and not a direct metric of this factor. Still, this
does not add heterogeneity to the GWR model but would allow it to be more conclusive
with the model. Public agencies must be able to register the technical definition of the
different elements of the housing envelope (e.g., walls, windows, and roofs) to improve
these indicators.

Similarly, exploring beyond NDVI could provide more detail about how vegetation
types directly affect mitigating extreme temperatures. On the other hand, from the sphere
of spatial quality, it would be recommended to have a dependent variable with a better
sampling frame (statistical representativeness) and given the significant spatial autocorre-
lation inherent in the variable, it seems wise to explore alternatives based on spatialized
sampling [82–84]. This implies generating a plausible explanatory scheme associated with
energy poverty and urging census and sample instruments to include this information to
better position this issue as an evaluable public policy through spatial indicators sensitive
to temporal monitoring. In this regard, it is essential to mention the possibility of adding a
territorial specificity factor, as indicated by Rodríguez-Iglesias and López [85] to reveal the
urban particularities that may be significant when developing the indicator or its standards,
given the climatic and geographical diversity of the national territory.

On the other hand, one of the study’s main findings is identifying a housing quality
pattern that acts as a proxy for vulnerability to energy poverty, repeating the distribution
pattern of the different socioeconomic sectors. This point is relevant in the context of
the discussion on urban segregation [62], where the conditions of liberating the land
and housing market exacerbate energy poverty by allocating homes with a low technical
standard in locations with low urban attributes that allow—for example—to mitigate
thermal fluctuations through the incorporation of green areas. On the other hand, the
role of professional heads of households in explaining the relationships of energy poverty
allows a rough approximation; however, it is critical to have block-level data on average
household income to improve these data. Although the educational level of heads of
household and occupational groups is a method widely validated by the literature to
generate a proxy of the socioeconomic status of households, the high degree of inequality
and how it is distributed in Chile may cause this factor to lose precision. Improving the
socioeconomic statistical sampling of grain is key to effectively identifying these patterns in
cities. This finding is aligned with the observations provided by Munro and Samarakoon,
and Bouzarovski. They indicated how the reliance on free-market urban economics triggers
inequalities represented in energy poverty and undermines the efforts of planning solutions
by the State [25,27]. The role of free-market urban economics in energy poverty is a common
discussion in the revised literature. It seems like the thesis of Kocack and Baglitas on how
that income inequality reproduces energy poverty [20] implies that resolving these issues
will demand a more interdisciplinary approach to the case, ranging from housing policies
to financial regulations, including macroeconomic factors as indicated by Primc et al. [19].

Croce and Tondini pointed out the importance of improving and exploring ways
to measure city energy poverty [24]. This article provides an approach which was not
previously applied to the case of Chile, with relevant findings as pointed out above. In
this sense, a diagram summarizes the interactions and conditions that would improve the
methodological quality of the model to better understand the housing situation under con-
ditions of energy poverty (Figure 10). This, from a multidimensional logic that articulates
socioeconomic, urban, and climatic variables—as this article questioned at the beginning—
and that spatial analysis can explain energy poverty from three types of vulnerability:
socio-spatial, territorial, and territorial socioenvironmental.
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variables to explain the situation of housing in energy poverty.

As Hidalgo argues, the dominance of the free market in urban development, coupled
with the ‘State’s” inability to generate significant advances in spatial justice, is a sure path to
the precariopolis [20]. This precarious, dystopian, and unjust city is no stranger to the reality
of different neighborhoods in the Santiago Metropolitan Area when analyzed from the
perspective of energy poverty. The articulation between the housing market and territorial
planning instruments needs to coordinate an approach that reduces the socio-spatial effects
of their contradictions.

5. Conclusions

The study results have allowed a methodology to develop maps of energy poverty,
taking the metropolitan area of Santiago de Chile as a specific case. The use of the GWR
analysis technique is innovative and has generated findings that can contribute to im-
proving territorial planning instruments for the Santiago Metropolitan Area. As a spatial
regression model, it presents methodological limitations, which were approached through
variable control and specific statistical analysis. In addition, applying this analysis tech-
nique opens a space for discussion on the cross-cutting relationships between energy
poverty and other inequalities represented in the urban space of Santiago. One of the main
inequalities is the quality of the data, for which it is suggested to move towards a national
census that accurately measures the quality of construction. In Chile, a new population
census will be implemented in 2024, which presents an excellent opportunity to implement
this measurement, considering the urgency of the energy poverty problem highlighted in
this article.
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The levels of socio-spatial inequality of this metropolis offer ad hoc conditions to
measure the precision of this type of analysis, where high residential segregation and
free-market urban development allow the application of a ceteris paribus (in the context of
urban econometric studies). In this scenario, the understanding of energy poverty as an
unequally distributed factor in the city is deepened, expressed through the interaction of
three types of vulnerability: socio-spatial, territorial, and socio-environmental. Alternative
findings inform decision-makers about the importance of generating comprehensive urban
policies on a more precise scale than the level of communes. Added to this is the critical
observation of official data, which are currently insufficient to generate diagnoses that
effectively improve resource targeting strategies. Applying energy poverty questions in the
next census or the national socioeconomic survey (CASEN) in 2024 is critical to advance a
better diagnosis of the problem.

The findings incorporate a new interpretive matrix into the already complex reproduc-
tion of the precariópolis in Santiago de Chile, as Hidalgo et al. [20] observed. The different
clusters in the territory indicate that energy poverty proliferates in sectors where social
housing has been produced or urban renewal via private condominiums has shaped these
spaces. Historically the construction of social housing in Chile has been based on low-cost
solutions using the minimum building standards, which has undermined the advance
toward social spaces where energy poverty is reduced. Although new regulations aim to
tackle this problem, free-market urban production is still ruling the urban development
of Chilean cities. Reversing this trend requires stricter housing policy regulations and
making residential technical requirements in Chile adapt to the urgent needs of the current
climate emergency. These requirements may assume a more aggressive retroactive role
than they have had thus far, providing more significant resources for improving existing
homes. The main topics to address in these regulations are the thermal envelope, passive
climatic techniques, and equal construction standards independent of the household’s
average income. The question to advance in these matters is how to accomplish it without
triggering a boost in housing prices. However, evidence indicates that better construction
standards are not the leading cause of increasing prices in Chile [62]. A passive strategy
from the State is no longer socially and environmentally sustainable. A necessary shift
is urgent.

As has been indicated, the concern about energy poverty is urgent, even more so
considering that the household budget in Chile is highly pressurized by the high cost of
living, which is underrepresented in the official instruments for measuring inflation. This
mechanism also ignored spatial diversity [86]. One of the main contributions of this article
is to identify the socio-spatial distribution of energy poverty, providing an exploratory
model whose application in other cities can estimate the impact of socioeconomic, urban,
and climatic variables at the territorial scale on the performance and comfort of cities and
homes on a domestic scale, thus fulfilling its initial objective. Further research may be
undertaken by sampling the different areas of the city identified as conducting qualitative
research based on fieldwork to collect primary data and then testing the results of this
analysis, focusing on a broader scale. In addition, the results must be presented to decision-
makers considering the relevance of the matters. Researchers must also communicate the
results to a broader audience and ensure that the Housing Ministry and the Parliament are
aware of the importance of regulating housing quality to reduce energy poverty.
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