
mathematics

Article

A Binary Machine Learning Cuckoo Search Algorithm
Improved by a Local Search Operator for the Set-Union
Knapsack Problem

José García 1,* , José Lemus-Romani 2 , Francisco Altimiras 3,* , Broderick Crawford 4 , Ricardo Soto 4 ,
Marcelo Becerra-Rozas 4 , Paola Moraga 1 , Alex Paz Becerra 1 , Alvaro Peña Fritz 1 , Jose-Miguel Rubio 5

and Gino Astorga 6

����������
�������

Citation: García, J.; Lemus-Romani,

J.; Altimiras, F.; Crawford, B.; Soto, R.;

Becerra-Rozas, M.; Moraga, P.;

Becerra, A.P.; Fritz, A.P.; Rubio, J.-M.;

et al. A Binary Machine Learning

Cuckoo Search Algorithm Improved

by a Local Search Operator for the

Set-Union Knapsack Problem.

Mathematics 2021, 9, 2611. https://

doi.org/10.3390/math9202611

Academic Editors: Anatoliy

Swishchuk and Petr Stodola

Received: 9 September 2021

Accepted: 12 October 2021

Published: 16 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Escuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso,
Valparaíso 2362804, Chile; paola.moraga@pucv.cl (P.M.); alex.paz@pucv.cl (A.P.B.);
alvaro.pena@pucv.cl (A.P.F.)

2 Escuela de Construcción Civil, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
jose.lemus@uc.cl

3 Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500975, Chile
4 Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile;

broderick.crawford@pucv.cl (B.C.); ricardo.soto@pucv.cl (R.S.); marcelo.becerra.r@mail.pucv.cl (M.B.-R.)
5 Facultad de Ingeniería, Ciencia y Tecnología, Universidad Bernardo O’Higgins Santiago,

Metropolitana 8370993, Chile; josemiguel.rubio@ubo.cl
6 Escuela de Negocios Internacionales, Universidad de Valparaíso, Viña del Mar 2572048, Chile;

gino.astorga@uv.cl
* Correspondence: jose.garcia@pucv.cl (J.G.); faltimiras@udla.cl (F.A.)

Abstract: Optimization techniques, specially metaheuristics, are constantly refined in order to de-
crease execution times, increase the quality of solutions, and address larger target cases. Hybridizing
techniques are one of these strategies that are particularly noteworthy due to the breadth of applica-
tions. In this article, a hybrid algorithm is proposed that integrates the k-means algorithm to generate
a binary version of the cuckoo search technique, and this is strengthened by a local search operator.
The binary cuckoo search algorithm is applied to the NP-hard Set-Union Knapsack Problem. This
problem has recently attracted great attention from the operational research community due to
the breadth of its applications and the difficulty it presents in solving medium and large instances.
Numerical experiments were conducted to gain insight into the contribution of the final results of
the k-means technique and the local search operator. Furthermore, a comparison to state-of-the-art
algorithms is made. The results demonstrate that the hybrid algorithm consistently produces superior
results in the majority of the analyzed medium instances, and its performance is competitive, but
degrades in large instances.

Keywords: combinatorial optimization; machine learning; metaheuristics; set-union knapsack

1. Introduction

Metaheuristics have demonstrated their efficacy in recent years in handling complex
problems, especially complex combinatorial challenges. There are several examples in
biology [1], logistics [2], civil engineering [3], and machine learning [4], among others.
Despite the increased efficiency, and in part due to the vast scale of many combinatorial
problems, it is also vital to maintain the strength of metaheuristic approaches. Thus, hybrid
techniques have been employed to enhance metaheuristic algorithmic performance.

Among the main approaches of how to integrate metaheuristics, has been found
hybrid heuristics, [5], where multiple metaheuristic algorithms are merged to boost their
capabilities. In [6], for example, the authors employed simulated annealing-based genetic
and tabu-search-based genetic algorithms to address the ordering planning problem. The

Mathematics 2021, 9, 2611. https://doi.org/10.3390/math9202611 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3126-8352
https://orcid.org/0000-0001-5379-0315
https://orcid.org/0000-0003-1992-8338
https://orcid.org/0000-0001-5500-0188
https://orcid.org/0000-0002-5755-6929
https://orcid.org/0000-0003-0426-0144
https://orcid.org/0000-0003-4252-8818
https://orcid.org/0000-0002-2380-623X
https://orcid.org/0000-0003-2018-1972
https://orcid.org/0000-0003-0377-4397
https://orcid.org/0000-0002-9913-0467
https://doi.org/10.3390/math9202611
https://doi.org/10.3390/math9202611
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9202611
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9202611?type=check_update&version=2

Mathematics 2021, 9, 2611 2 of 19

hybrid approaches were compared to the traditional approaches in this study, with the
hybrid approaches outperforming the traditional approaches. In [7], the cuckoo search
and firefly algorithm search methods are combined in order to avoid getting the procedure
stuck in local optimum. The hybrid algorithm was applied to a job schedulers problem in
high-performance computing systems. When compared to traditional policies, the results
indicated significant reductions in server energy consumption.

Another interesting hybrid approach, [8], is matheuristics, which combines mathemat-
ical programming approaches with metaheuristic algorithms. The vehicle routing problem,
for example, was studied utilizing mixed-integer linear programming and metaheuristic
techniques in [9]. These methods, generally, do not take advantage of the auxiliary data
created by metaheuristics in order to obtain more reliable results. In the solution-finding
process, metaheuristics provide useful accessory data, which may be used to inform ma-
chine learning approaches. The area of artificial intelligence and in particular machine
learning has grown important in recent times applying in different areas [10–12]. Machine
learning approaches combined with metaheuristic algorithms is a novel area of research
that has gained traction in recent years [13].

According to [13,14], there are three primary areas in which machine learning al-
gorithms utilize metaheuristic data: low-level integrations, high-level integrations, and
optimization problems. A current area of research in low-level integrations is the construc-
tion of binary versions of algorithms that operate naturally in continuous space. In [15], a
state-of-the-art of the different binarization techniques is developed in which two main
groups stand out. The first group corresponds to general binarization techniques in which
the movements of the metaheuristics are not modified, but rather after its execution, the
binarization of the solutions is applied. The second group corresponds to modifications
applied directly to the movement of metaheuristics. The first group has the advantage
that the procedure is used for any continuous metaheuristic, the second, when the adjust-
ments are carried out in an adequate way, have good performance. There are examples
of integration between machine learning and metaheuristics in this domain. In [16,17],
the binary versions of the cuckoo search algorithm were generated using the k-nearest
neighbor technique. These binary versions were applied to multidimensional knapsack and
set covering problems, respectively. Whereas in the field of civil engineering [18,19], hybrid
methods were proposed that utilizes db-scan and k-means, respectively, as a binarization
method and is used to optimize the emission of CO2 of retaining walls.

In accordance with low-level integration between machine learning and metaheuris-
tics, in this article, a hybrid approach was used that combines a cuckoo search algorithm
with the unsupervised k-means technique to obtain a binary version of the continuous
cuckoo search algorithm. The suggested approach combines these two strategies with the
objective of obtaining a robust binary version through the use of the data acquired during
the execution of the metaheuristic. The proposed algorithm was applied to the set-union
knapsack problem. The set union knapsack problem (SUKP) [20] is a generalization of
the classical knapsack problem. SUKP has received attention from researchers in recent
years [21–23] due to its interesting applications [24,25], as well as the difficulty of being
able to solve it efficiently. In SUKP, there is a set of items where each item has a profit.
Additionally, each item associates a set of elements where each element has a weight that is
associated with the knapsack constraint. In the literature, it is observed that the algorithms
that have addressed SUKP are mainly improved metaheuristics and have allowed obtain-
ing results in reasonable times. When applying a metaheuristic in its standard form to
SUKP, these algorithms have had limitations such as stability and decreased performance
as the instance grows in size. For example, in [26], different transfer functions were used
and evaluated with small and medium SUKP instances. This effect is observed when the
algorithms are applied to standard SUKP instances, additionally, to increase the challenge
in [27], a new set of benchmark problems was recently generated. All previous, leads to
exploring hybrid techniques in order to strengthen the performance of the algorithm. The
following are the contributions made by this work:

Mathematics 2021, 9, 2611 3 of 19

1. A new greedy initiation operator is proposed.
2. The k-means technique, proposed in [28], is used to binarize the cuckoo search (CS)

algorithm, tuned and applied for the first time to the SUKP. Additionally, a random
binarization operator is designed and two transition probabilities are applied to
evaluate the contribution of k-means in the final result. It should be noted that the
binarization method allows generating binary versions of other continuous swarm
intelligence metaheuristics.

3. A new local search operator is proposed to improve the exploitation of the search
space.

4. The results obtained by the hybrid algorithm are compared with different algorithms
that have addressed SUKP. It should be noted that the standard SUKP instances and
the new instances proposed in [27] were solved.

The following is a summary of the contents: Section 2 delves into the set-union
knapsack problem and its applications. The k-means cuckoo search algorithm and the
local search operator are described in Section 3. In Section 4, the detail of the numerical
experiments and comparisons are developed. Finally, the conclusions and potential lines
of research are discussed in Section 5.

2. The Set Union Knapsack Problem

The Set-Union Knapsack Problem (SUKP) is a generalized knapsack model with the
following definition. First, let U be a set of n elements with each element j ∈ U having a
weight wj > 0. Let V be a set of m items with each item i ∈ V being a subset of elements
Ui ⊆ U and having a profit pi. Finally, for a knapsack with capacity C, SUKP entails
identifying a set of items S ⊆ V that maximizes the total profit of S while guaranteeing that
the total weight of the components of S does not exceed the capacity C of the knapsack.
Being the elements belonging to the set S, the decision variables of the problem. It is worth
noting that an elements weight is only tallied once, even if it corresponds to several chosen
items in S. SUKP may be written mathematically as follows:

Maximize P(S) = ∑
i∈S

pi. (1)

subject to:
W(S) = ∑

j∈∪i∈SUi

wj ≤ C, S ⊆ V. (2)

In reviewing the literature SUKP has been found to have interesting applications, for
example in [24]. The goal of this application is to improve the scalability of cybernetic
systems robustness. Given a centralized cyber system with a fixed memory capacity that
holds a collection of profit-generating services (or requests), each of which contains a
set of data objects. When a data object is activated, it consumes a particular amount of
memory, and using the same data object several times does not result in increased memory
consumption (An important condition of SUKP). The goal is to choose a subset of services
from among the candidate services that maximizes the total profit of those services while
keeping the total memory required by the underlying data objects within the cyber system’s
memory capacity. The SUKP model, in which an item corresponds to a service with its
profit and an element relates to a data object with its memory usage, is a convenient way to
structure this application (element weight). Finding the optimal solution to the ensuing
SUKP problem is thus comparable to solving the data allocation problem.

Another interesting application is related to the rendering of an animated crow in
real-time [29]. In the article, the authors present a method to accelerate the visualization of
large crowds of animated characters. They adopt a caching system that enables a skinned
key-pose (elements) to be re-used by multi-pass rendering, between multiple agents and
across multiple frames, an interpolative approach that enables key-pose blending to be
supported. In this problem, each item corresponds to a crowd member. Applications are
also found in data stream compression through the use of bloom filters [25].

Mathematics 2021, 9, 2611 4 of 19

SUKP is an NP-hard problem [20] that has been tackled by a variety of methods.
In [20,30], theoretical studies using greedy approaches or dynamic programming are found.
An integer linear programming model was developed in [31] and applied to small instances
of 85 and 100 items, finding the optimal solutions.

Metaheuristic algorithms have also addressed SUKP. In [32], the authors use an
artificial bee colony technique to tackle SUKP. In addition, this algorithm integrates a greedy
operator with the aim of addressing infeasible solutions. In [33], the authors designed an
enhanced moth search algorithm. To improve its efficiency, this algorithm incorporates
an integrating differential mutation operator. The Jaya algorithm was employed in [34].
Additionally, a differential evolution technique was incorporated to enhance exploration
capability. The Cauchy mutation is used to boost its exploitation ability. Furthermore,
an enhanced repair operator has been designed to repair the infeasible solutions. In [26],
the effectiveness of different transfer functions is studied in order to binarize the moth
metaheuristics. A local search operator is designed in [35] and applied to long-scale
instances of SUKP. The article proposes three strategies that conform to the adaptive tabu
search framework and efficiently solve new instances of SUKP. In [36], the grey wolf
optimizer (GWO) algorithm is adapted to address binary problems. For the algorithm to
be robust, traditional binarization methods are not used. To replicate the GWO leadership
hierarchy technique, a multiple parent crossover is established with two distinct dominance
tactics. In addition, an adaptive mutation with an exponentially decreasing step size is used
to avoid early convergence and achieve a balance of intensification and diversification.

3. The Machine Learning Cuckoo Search Algorithm

This section describes the machine learning binary cuckoo search algorithm used to
solve the SUKP problem. This hybrid algorithm consists of three main operators: A greedy
initialization operator detailed in Section 3.1. CS is then used to develop the optimization.
Here, it should be noted that CS is going to produce results with values in R and therefore
they must be binarized. Then, a machine learning binarization operator performs the
binarization of the solutions generated by the cuckoo search algorithm, and which uses the
unsupervised k-means technique. This operator is detailed in Section 3.2. Finally, a local
search operator is applied when the condition of finding a new maximum is met. The logic
of the local search operator is detailed in Section 3.3. Figure 1 shows the flowchart of the
binary machine learning cuckoo search algorithm. It is also worth noting that CS can be
replaced by any other continuous swarm intelligence metaheuristic.

Is the exit
condition

met?

Greedy
initialization

End

Start

Execute CS

Yes

No

get a new better
value?

Execute local
search operator

Yes

No

Execute MLBO

Figure 1. Machine learning cuckoo search binary algorithm.

Mathematics 2021, 9, 2611 5 of 19

3.1. Greedy Initialization Operator

The objective of this operator is to build the solutions that will start the search process.
For this, the items are ordered using the ratio defined in Equation (3). As input to the
operator, sortItems is utilized, and it contains the elements ordered by r from highest to
lowest. As output, a valid solution, Sol, is obtained.

r =
item profit

sum of element weights
(3)

In line 4, a blank Sol solution is initialized, then in line 5 the fulfillment of the constraint
by Sol is validated. While the weight of the solution items (weighSol), Equation (2), is not
equal or greater thab the knapsack constraint (knapsackSize), a random number rand is
generated in line 6, and compare it in line 7 with β. If rand is greater than β, an element
of sortItems is added in line 8, fulfilling the order. Otherwise, in line 11, a random item
is chosen, then add it to the solution, and in line 12 remove it from sortItems. Once the
knapsack is full, the solution needs to be cleaned up in line 15, as it is greater than or
equal to knapsackSize. In the case that it is the same, it does not take action. In the event
that it is greater, the items of Sol must be ordered using r defined in Equation (3) and it is
removed in order starting with the smallest and checking the constraint in each elimination.
Once the constraint is fulfilled, the procedure stops and the solution Sol is returned. The
pseudo-code is shown in Algorithm 1.

Algorithm 1 Greedy initialization operator

1: Function initSolutions(sortItems)

2: Input sortItems
3: Output Sol
4: Sol ← []

5: while (weightSol < knapsackSize) do

6: rand← getRandom()

7: if rand > β then

8: Sol ← addSortItem(sortItems)

9: sortItems← removeFromSortItems(Item)

10: else

11: Sol ← addRandomItem(sortItems)

12: sortItems← removeFromSortItems(Item)

13: end if

14: end while

15: Sol ← cleanSol(Sol)
16: return Sol

3.2. Machine Learning Binarization Operator

The machine learning binarization operator (MLBO) is responsible for the binarization
process. This receives as input the list lSol of solutions obtained from the previous iteration,
the metaheuristic (MH), in this case CS, the best solution obtained, bestSol so far, and
the transition probability for each cluster, transProbs. To this list lSol, in line 4, the MH
is applied, in this case it corresponds to CS. From the result of applying MH to lSol, the
absolute value of velocities, vlSol, is obtained. These velocities correspond to the transition
vector obtained by applying MH to the list of solutions. The set of all velocities is clustered
in line 5, using k-means (getKmeansClustering), in this particular case K = 5.

So, for each Soli and each dimension j, a cluster is assigned and each cluster is
associated with a transition probability (transProbs), ordered by the value of the cluster
centroid. For this case the transition probabilities used were [0.1, 0.2, 0.4, 0.8, 0.9]. Then for
the set of points that belong to the cluster with the smallest centroid, which is represented

Mathematics 2021, 9, 2611 6 of 19

by the green color in Figure 2, the transition probability 0.1 was associated. For the group of
blue points that obtained the centroid with the highest value, a transition probability of 0.9
was associated. The smaller the value of the centroid, the smaller the value of transProbs
are associated with it. Then, in line 8, for each lSoli,j, a transition probability dimSolProbi,j
is associated and and later on line 9 compared with a random number r1. In the case that
dimSolProbi,j > r1, then it is updated considering the best value, line 10, and otherwise, it
is not updated, line 12. Once all the solutions have been updated, each of them is cleaned
up using the process explained in Section 3.1. In the case of a new best value is obtained,
in line 19, a local search operator is executed. This local search operator is detailed in the
following section. Finally, the updated list of solutions lSol and the best solution bestSol
are returned. The pseudo-code is shown in Algorithm 2.

Continuos
Solutions

Binary Solutions

Each cluster is
associated with a

transition probability.

Figure 2. K-means binarization procedure.

Algorithm 2 Machine learning binarization operator (MLBO).

1: Function MLBO(lSol, MH, transProbs, bestSol)
2: Input lSol, MH, transProbs
3: Output lSol, bestSol
4: vlSol ← getAbsValueVelocities(lSol, MH)

5: lSolClust← getKmeansClustering(vlSol, K)

6: for (each Soli in lSolClust) do

7: for (each dimSoli,jl in Soli) do

8: dimSolProbi,j = getClusterProbability(dimSol, transProbs)

9: if dimSolProbi,j > r1 then

10: Update lSoli,j considering the best.

11: else

12: Do not update the item in lSoli,j
13: end if

14: end for

15: Soli ← cleanSol(Soli)
16: end for

17: tempBest← getBest(lSol)
18: if cost(tempBest) > cost(bestSol) then

19: tempBest← execLocalSearch(tempBest)
20: bestSol ← tempBest
21: end if
22: return lSol, bestSol

Mathematics 2021, 9, 2611 7 of 19

3.3. Local Search Operator

According to Figure 1, the local search operator is executed every time the metaheuris-
tic finds a new best value. As input, the local search operator receives the new best values
(bestSol), and as a first stage, it uses it to obtain the items that belong and do not belong
to bestSol, line 4 of Algorithm 3. These two lists of items are iterated, T = 300 times,
performing a swap without repetition, line 7 of Algorithm 3. Once the swap is carried out,
the conditions are evaluated: it will improve the profit and that the weight of the knapsack
is less than or equal to knapsackSize. If both conditions are met, the bestSol is updated by
tempSol, to finally return bestSol.

Algorithm 3 Local search.

1: Function LocalSearch(bestSol)
2: Input bestSol
3: Output bestSol
4: lsol Items, lsolNoItems← getItems(bestSol)
5: i = 0
6: while (i < T) do
7: tempSol ← swap(lsol Items, lsolNoItems)
8: if pro f it(tempSol) > pro f it(bestSol) and knapsack(tempSol) <= knapsackSize

then
9: bestSol ← tempSol

10: end if
11: i += 1
12: end while
13: return bestSol

4. Results

This section details the experiments conducted with MLBO and cuckoo search meta-
heuristic, to determine the proposed algorithms effectiveness and contribution when
applied to a NP-hard combinatorial problem. This specific version of MLBO that cuckoo
search uses will be denoted by MLCSBO. The SUKP was chosen as a benchmark problem
because it has been approached by several algorithms and is not trivial to solve in small,
medium and large instances. However, it should be emphasized that the MLBO bina-
rization technique is easily adaptable to other optimization algorithms. The optimization
algorithm chosen was CS because it is a simple-to-parameterize algorithm that has been
used to solve a wide variety of optimization problems.

Python 3.6 was used to build the algorithm, as well as a PC running Windows 10 with
a Core i7 processor and 16 GB of RAM. To evaluate whether the difference is statistically
significant, the Wilcoxon signed-rank test was used. Additionally, 0.05 was utilized as
the significance level. The test is chosen in accordance with the methodology outlined
in [37,38]. The Shapiro–Wilk normality test is used initially in this process. If one of
the populations is not normal and both have the same number of points, the Wilcoxon
signed-rank test is proposed to determine the difference. In the experiments, the Wilcoxon
test was used to compare the MLCSBO results with the other variants or algorithms
used in pairs. For comparison, the complete list of results was always used. Further, in
the case of the experiment in Section 4.2, since there are multiple comparisons and in
order to correct for these comparisons, a post hoc test was performed with the Holm–
Bonferroni correction. The statsmodels and scipy libraries of Python were used to develop
the tests. Each instance was resolved 30 times in order to acquire the best value and average
indicators. Additionally, the average time (in seconds) required for the algorithm to find
the optimal solution is reported for each instance.

Mathematics 2021, 9, 2611 8 of 19

The first set of instances were proposed in [39]. These instances have between 85
and 500 items and elements. These instances are characterized by two parameters. A first
parameter µ = (∑m

i=1 ∑n
j=1 Rij)/(mn), which represents the density in the matrix, where

Rij = 1 means the item i includes to the j element. A second parameter ν = C/(∑n
j=1 wj),

which represents the capacity ratio C over the total weight of the elements. Then, a SUKP
instance is named as m_n_µ_ν. The second group of instances was introduced in [27], and
in this case, they contain between 585 and 1000 items and elements. The form was built
following the same previous structure.

4.1. Parameter Setting

The methods described in [28,40] was used to pick the parameters. To make an
appropriate parameter selection, this methodology employs four metrics specified by the
Equations (4)–(7). Values were generated using the instances 100_85_0.10_0.75, 100_100_0.15_0.85,
and 85_100_0.10_0.75. Each parameter combination was run ten times. The collection of
parameters that have been explored and selected is presented in Table 1. To determine the
configuration, the polygon area obtained from the four metric radar chart is calculated for
each setting. The configuration that obtained the largest area was selected. In the case of
the transition probabilities, only the probability of the third cluster was varied considering
the values [0.4, 0.5], the rest of the values were considered constant.

1. The difference in percentage terms between the best value achieved and the best
known value:

bSolution = 1− KnownBestValue− BestValue
KnownBestValue

(4)

2. The percentage difference between the worst value achieved and the best value
known:

wSol = 1− KnownBestValue−WorstValue
KnownBestValue

(5)

3. The percentage departure of the obtained average value from the best-known value:

aSol = 1− KnownBestValue− AverageValue
KnownBestValue

(6)

4. The convergence time used in the execution:

nTime = 1− convergenceTime−minTime
maxTime−minTime

(7)

Table 1. Parameter setting for the MLCSBO.

Parameters Description Value Range

N Number of Nest 20 [10, 15, 20]
K Clusters number 5 [4, 5, 6]
γ Step Length 0.01 0.01
κ Levy distribution parameter 1.5 1.5
T Maximum local search iterations 300 [300, 400, 800]
β Random initialization parameter 0.3 [0.3, 0.5]

Transition probability Transition probability [0.1, 0.2, 0.4, 0.8, 0.9] [0.1, 0.2, [0.4, 0.5], 0.8, 0.9]

4.2. Insight into Binary Algorithm

The objective of this section is to determine the contribution of the MLCSBO operator
and the local search operator in the final result of the optimization. To address this
challenge, a random operator is designed that aims to replace MLBO in Figure 1 with an
operator that performs random transitions. In particular, two configurations are studied
Random-05, which has a 50% chance of making a transition, and Random-03, which has

Mathematics 2021, 9, 2611 9 of 19

a 30% chance of making a transition. Additionally, the configuration with and without a
local search operator is studied. Each of the algorithms is evaluated for its performance
without (NL) and with the local search operator.

The results are shown in Tables 2 and 3 and Figure 3. From Table 2, it can be deduced
that the best values obtained are for MLCSBO, which has the binarization mechanism
based on k-means. The above for both indicators average and best value. When comparing
MLCSBO-NL, note that MLCSBO-NL does not have the local search operator, with Random-
03-NL and Random-05-NL, it is noted that MLCSBO-NL is more robust in the averages
and best values. This allows evaluating the effect of incorporating k-means with respect
to a random binarization operator in the optimization result. Furthermore, MLCSBO-NL
works better than Random-03 and Random-05, where the latter incorporate the local search
operator. On the other hand, when analyzing the contribution of the local operator, it is
observed that each time it is incorporated generates an improvement in both the averages
and the best values. First the Wilcoxon statistical test was applied, where MLCSBO is
compared with the other variations. The statistical test indicates that the differences are
significant between MLCSBO and the other variations analyzed. However, as there are
multiple comparisons, the p-values were corrected using the Holm–Bonferroni test. For this
correction, the experiments of the operators Random-03 and Random-05 were treated as
independent groups. In Figure 3, we see that the highest time is for MLCSBO. In particular,
Random-05-NL, which corresponds on average to the best performer, is 18.8% faster than
MLCSBO. On the other hand, MLCSBO-NL which does not have the local search operator
is 7.4% faster than MLCSBO.

In Figure 3 and Table 4, the %-Gap, defined in Equation (8), with respect to the best
known value is compared of the different variants developed in this experiment. The
comparison is made through box plots. In Figure, it is observed that MLCSBO has a more
robust behavior than the rest, since it obtains better values and smaller dispersions than
the other variants. On the other hand, the variants that obtain the worst performance
correspond to those that have the random binarization operator and do not use the local
search operator.

%-Gap = 100× BestknownValue−Value
BestknownValue

(8)

MLC
SB

O

MLC
SB

O-NL

Ran
do

m-03

Ran
do

m-03
-NL

Ran
do

m-05

Ran
do

m-05
-NL

Algorithm

0.0

2.5

5.0

7.5

10.0

12.5

15.0

%
-G

ap

Figure 3. Box plots for MLCSBO and random operators, with and without local search operator.

Mathematics 2021, 9, 2611 10 of 19

Table 2. Comparison between MLCSBO and random operators, with and without local search operator.

Random-03 Random-05 Random-03-NL Random-05-NL MLCSBO-NL MLCSBO
Instance Avg Best Std Avg Best Std Avg Best Std Avg Best Std Avg Best Std Avg Best Std

100_85_0.10_0.75 12,825 13,089 200.9 12,862.5 13,089 136.3 12,779.4 13,044 243.8 12,794.4 13,089 207 12,927.8 13,089 93 13,060 13,283 46.4
100_85_0.15_0.85 12,071.6 12,233 83.7 12,128 12,233 58.3 12,063.7 12,226 100.6 12,039.4 12,272 106.8 12,177 12,274 46.3 12,237.6 12,274 18.2

200_185_0.10_0.75 13,296.4 13,502 89.4 13,296.5 13,443 102 13,265 13,521 112.7 13,252.1 13,405 94.7 13,357.1 13,521 72.8 13,429.8 13,521 44.1
200_185_0.15_0.85 13,701.3 14,215 238.2 13,711.2 13,995 163.4 13,624 14,102 226.9 13,581.9 13,979 181 13,729.5 14,187 165.2 13,853.8 14,215 149.9
300_285_0.10_0.75 11,221.8 11,469 118.8 11,282.7 11,563 104.9 11,219.3 11,545 167.4 11,218.9 11,545 165.8 11,305.7 11,563 110.1 11,419.4 11,563 70.8
300_285_0.15_0.85 12,082.2 12,402 158.4 12,114.3 12,380 121.7 11,942.9 12,273 190.6 11,960.3 12,402 221.6 12,116.1 12,380 119 12,263.4 12,402 61.7
400_385_0.10_0.75 11,282 11,484 99.9 11,333.2 11,484 84.4 11,241.5 11,484 109.2 11,273.4 11,484 117.8 11,295.1 11,484 83 11,461.3 11,484 48.9
400_385_0.15_0.85 10,716.3 11,209 209.7 10,836.5 11,209 180.9 10,677.7 11,209 238 10,598.7 10,923 188.8 10,837.5 11,209 179.1 10,971.8 11,209 164.4
500_485_0.10_0.75 11,467.5 11,658 101.3 11,530 11,689 96.8 11,416.7 11,610 109.1 11,507.2 11,729 128 11,554.1 11,722 74 11,636.2 11,729 38.3
500_485_0.15_0.85 9779.8 10,217 126.2 9783.5 10,217 136.1 9695.4 10,217 144.9 9686.4 10,086 154.9 9811.4 10,086 98.1 9916.4 10,217 99.8
100_100_0.10_0.75 13,831.7 13,957 105.2 13,835.2 13,957 74.8 13,698.6 13,957 165.6 13,686.1 13,937 160 13,856.8 13,957 70.2 13,952.8 13,990 11.4
100_100_0.15_0.85 13,133.5 13,445 182.4 13,157 13,498 180.5 13,057.2 13,407 181.2 13,013.1 13,449 249.9 13,180.4 13,498 173.1 13,337.8 13,508 148.3
200_200_0.10_0.75 12,180.8 12,350 87.2 12,181.3 12,522 106.1 12,136.7 12,384 126.1 12,088.6 12,301 124.7 12,196.1 12,522 110.8 12,330.6 12,522 101.1
200_200_0.15_0.85 11,793 12,317 153.1 11,797.1 12,048 165.1 11,663.7 11,930 156.3 11,681.4 12,100 194.6 11,757.8 11,982 118.7 11,975.1 12,317 140.4
300_300_0.10_0.75 12,539.5 12,817 90.9 12,578.8 12,817 98.3 12,526 12,736 114.9 12,465.1 12,817 162.1 12,621.5 12,817 85.3 12,716.4 12,817 69.2
300_300_0.15_0.85 11,157.8 11,425 138.8 11,240.7 11,410 98.9 11,137.4 11,410 200 11,042.9 11,410 178.1 11,231.6 11,410 97.8 11,408.8 11,425 26.7
400_400_0.10_0.75 11,397.7 11,665 154.8 11,406.7 11,665 134.3 11,328.7 11,665 147.5 11,378.2 11,665 143.5 11,415.1 11,665 102.8 11,600.9 11,665 73.9
400_400_0.15_0.85 11,046.4 11,325 166.9 11,087.2 11,325 156.6 10,911.2 11,325 244.5 10,936.8 11,325 258.7 11,090.9 11,325 122.8 11,271.2 11,325 62.4
500_500_0.10_0.75 10,753.2 10,943 86.1 10,841.6 11,041 85.5 10,748.9 11,078 148.5 10,769.5 11,011 121.2 10,846.4 10,983 70 10,954.3 11,078 74.2
500_500_0.15_0.85 9847.3 10,108 146.1 9874.6 10,194 163.3 9768.1 10,160 191.4 9829.9 10,209 188 9879.4 10,162 146.5 10,056.6 10,209 107.2

85_100_0.10_0.75 11,761.2 12,045 159.6 11,797.4 12,045 131.7 11,684.1 11,964 181.9 11,713.4 12,045 160 11,797.7 12,045 159.8 11,945.5 12,045 126.6
85_100_0.15_0.85 11,994.5 12,369 223.4 12,053 12,299 129.2 11,942.5 12,348 235.5 11,988 12,369 233.6 12,083 12,369 152.9 12,253.1 12,369 81.6

185_200_0.10_0.75 13,539.9 13,659 99.6 13,493.7 13,695 90.8 13,468 13,696 120 13,449.8 13,695 125.1 13,558.7 13,696 78.7 13,651.7 13,696 36.1
185_200_0.15_0.85 10,890.6 11,155 94.4 10,883.2 11,298 164.6 10,893.9 11,242 135 10,873.8 11,298 149.9 10,969.7 11,298 139.4 11,068.7 11,298 162.4
285_300_0.10_0.75 11,401.4 11,568 100.4 11,407.4 11,568 105.4 11,323.9 11,568 146.6 11,359.6 11,568 126.7 11,410.1 11,568 83.3 11,546 11,568 13.5
285_300_0.15_0.85 11,258.4 11,763 221.4 11,368.1 11,763 149.9 11,220.4 11,714 225.8 11,193.4 11,590 240.1 11,333.5 11,763 208.4 11,564.3 11,763 129.2
385_400_0.10_0.75 10,274.1 10,397 69.5 10,300.6 10,407 71.2 10,248.8 10,436 100.3 10,249.1 10,467 88 10,302 10,407 63.7 10,400.7 10,600 47.3
385_400_0.15_0.85 9918.2 10,506 242.8 9921.8 10,294 212.1 9815 10,354 253.2 9771 10,329 358.2 9955.1 10,506 274.9 10,162 10,506 172.7
485_500_0.10_0.75 10,823.3 11,094 83.1 10,828.5 11,115 100.5 10,790.6 11,097 135 10,785.8 11,097 97.6 10,895.6 11,115 105.4 10,965.3 11,125 96.2
485_500_0.15_0.85 9836.6 10,117 162.2 9873.8 10,208 150.7 9760.3 10,104 160.1 9795.1 10,220 191.9 9897.4 10,104 122 10,095.7 10,220 74.1

Average 11,594.1 11,883.4 139.8 11,626.9 11,882 125.1 11,535.0 11,860 167.1 11,532.8 11,860 170.6 11,646.3 11,890 117.6 11,783.6 11,931 83.2
p-value Wilcoxon 1.7 × 10−6 6.5 × 10−4 1.8 × 10−6 1.9 × 10−4 1.7 × 10−6 5.9 × 10−5 1.7 × 10−6 1.9 × 10−4 1.7 × 10−6 9.7 × 10−4

p-value Holm–Bonferroni 5.1 × 10−6 0.0013 5.4 × 10−6 3.8 × 10−4 5.1 × 10−6 1.2 × 10−4 5.1 × 10−6 3.8 × 10−4 1.7 × 10−6 9.7 × 10−4

Mathematics 2021, 9, 2611 11 of 19

Table 3. Average runtime values in seconds for MLCSBO and random operators, with and without a local search operator.

Instance MLCSBO MLCSBO-NL Random-03 Random-03-NL Random-05 Random-05-NL

100_85_0.10_0.75 10 9 10 7 10 5
100_85_0.15_0.85 20 18 19 16 18 15

200_185_0.10_0.75 26 21 17 15 19 14
200_185_0.15_0.85 61 48 54 40 54 51
300_285_0.10_0.75 33 25 22 15 23 17
300_285_0.15_0.85 66 60 55 57 69 48
400_385_0.10_0.75 35 32 31 26 32 29
400_385_0.15_0.85 97 102 106 101 101 99
500_485_0.10_0.75 63 55 39 43 56 47
500_485_0.15_0.85 119 106 107 94 111 112
100_100_0.10_0.75 6 5 4 4 4 5
100_100_0.15_0.85 17 17 12 14 16 14
200_200_0.10_0.75 32 31 24 25 24 24
200_200_0.15_0.85 140 143 124 122 133 112
300_300_0.10_0.75 99 95 88 84 87 85
300_300_0.15_0.85 156 148 160 152 153 144
400_400_0.10_0.75 46 43 32 30 42 37
400_400_0.15_0.85 202 198 176 161 191 143
500_500_0.10_0.75 82 89 80 69 84 80
500_500_0.15_0.85 168 135 153 128 123 110
85_100_0.10_0.75 4 4 4 4 4 4
85_100_0.15_0.85 18 17 18 17 18 18

185_200_0.10_0.75 29 32 29 25 29 20
185_200_0.15_0.85 67 53 42 43 47 44
285_300_0.10_0.75 20 18 16 17 14 16
285_300_0.15_0.85 91 79 73 66 67 60
385_400_0.10_0.75 72 65 53 70 57 69
385_400_0.15_0.85 122 101 92 92 85 99
485_500_0.10_0.75 114 114 108 104 87 108
485_500_0.15_0.85 130 123 120 106 134 110

Average 71.5 66.2 62.3 58.2 63.1 58.0

Table 4. Percentile values for MLCSBO and Random operators, with and without local search operator.

Percentile MLCSBO MLCSBO-NL Random-03 Random-03-NL Random-05 Random-05-NL

2.5 0.00 0.01 0.16 0.63 0.02 0.22
25 0.57 1.82 1.98 2.44 1.95 2.25
50 1.51 2.81 3.19 3.78 2.94 3.60
75 2.43 3.80 4.34 5.12 4.05 4.85

97.5 4.06 6.08 6.64 7.64 6.25 7.61

Additionally, the significance has been analyzed using the Wilcoxon test for the other
variants. The details of the results are shown in Table 5. In each cell of the table, the
p-values of best|average are written. In the table, it is observed that the difference of
MLCSBO-NL with respect to the Random variants is not significant in the best indicator,
but it is significant in the average indicator. The same goes for Random03 with respect to
Random05. However, when analyzing Random03-NL with respect to Random05-NL, there
is no significant difference in any of the indicators.

Table 5. Best|average p-values for the Wilcoxon test.

MLCSBO MLCSBO-NL Random-03 Random-03-NL Random-05

MLCSBO -
MLCSBO-NL 9.7 × 10−4|1.7 × 10−6 -
Random-03 6.5 × 10−4|5.1 × 10−6 0.31|5.7 × 10−5 -

Random-03-NL 1.2 × 10−4|5.1 × 10−6 0.06|1.7 × 10−5 0.23|2.1 × 10−5 -
Random-05 3.8 × 10−4|5.4 × 10−6 0.97|0.0012 0.61|3.1 × 10−4 0.05|1.9 × 10−5 -

Random-05-NL 3.8 × 10−4|5.1 × 10−6 0.44|1.7 × 10−5 0.47|8.4 × 10−4 0.77|0.87 0.50|1.7 × 10−5

Mathematics 2021, 9, 2611 12 of 19

4.3. Algorithm Comparisons

This section compares MLCSBO performance to that of other algorithms that have
tackled SUKP. Different forms of approximations were used in the comparative selection.
A genetic algorithm (GA), in which uniform mutation, point cross-over, and roulette wheel
selection operators were used. In particular, the cross-over probability was pc = 0.8 and
the mutation probability was selected at pm = 0.01. An artificial bee colony (ABCbin,
BABC), where the parameters used were a = 5 and limit defined as Max{m, n}/5, and a
binary evolution technique (binDE) with factor F = 0.5 and crossover constant in 0.3, were
adapted in [32] to tackle the SUKP. In [41], a weighted superposition attraction algorithm
(bSWA), with parameters τ = 0.8, φ = 0.008, and sl1 = 0.4, is proposed to solve SUKP.
Two variations gPSO and gPSO* of particle swam optimization algorithm were proposed
in [22]. In the case of gPSO, the init parameters used were r1 = 0.05, φ = 0.005, p1 = 0.2,
and p2 = 0.8. In the case of gPSO*, p1 = 0.10 and p2 = 0.70. An artificial search agent with
cognitive intelligence (intAgents) was proposed in [42], where the parameters used are,
θmut = 0.005, mrate = 0.05, pxover = 0.6, and pitMax

xover = 0.1. Finally, the DH-Jaya algorithm
was designed in [34], with parameters Cr = 0.8, F + 0.8, and Ca = 1. In Tables 6 and 7,
the comparisons of the 30 smallest instances of SUKP are presented. Table 8 shows the
results for the 30 largest instances. In the latter case, only results were found for BABC and
DH-Jaya reported in the literature.

Consider Tables 6 and 7, which summarize the results for the 30 smallest instances.
MLCSBO had the best value in 27 of the 30 cases. After that, GWOrbd has 16 best values,
DH-Jaya has 11 best values, and GWOfbd also has 11 best values. It is possible that more
than one algorithm gets the best value in some cases, in which case they are repeated in
the accounting. This shows a good performance of the MLCSBO algorithm with respect
to the other algorithms both in finding the best values as well as in reproducing these
systematically. However, when the results for the 30 largest instances are analyzed, which
are shown in Table 8, it is observed that the good performance obtained by MLCSBO
is not repeated. In the case of larger instances, DH-Jaya is observed to perform better
than MLCSBO. In the case of the best value indicator, DH-Jaya obtains 22 best values and
MLCSBO 10. Even more, so when the average indicator is compared, MLCSBO gets 4 best
averages and DH-Jaya, 26. To make sure there was an exploit problem on the local search
operator, in these cases T was changed to 800, however, no improvements were obtained.
The latter raises the suspicion that the decrease in performance in large cases is related to
the exploration of the algorithm.

Mathematics 2021, 9, 2611 13 of 19

Table 6. Comparison between GA, BABC, ABC bin, gPSO*, gPSO, intAgents, DH-Jaya, GWOfbd, GWOrbd and MLCSBO algorithms for medium instances.

Instance Results Best Known GA BABC ABCbin binDE bWSA gPSO* gPSO intAgents DH-jaya GWOfbd GWOrbd MLCSBO

100_85_0.10_0.75 best 13,283 13,044 13,251 13,044 13,044 13,044 13,167 13,283 13,283 13,283 13,089 13,283 13,283
Avg 12,956.4 13,028.5 12,818.5 12,991 12,915.67 12,937.05 13,050.53 13,061.02 13,076 13,041.37 13,065.93 13,060
std dev 130.66 92.63 153.06 75.95 185.45 189.6 37.41 44.08 66.61 31.17 70.02 46.4

100_85_0.15_0.85 best 12,479 12,066 12,238 12,238 12,274 12,238 12,210 12,274 12,274 12,274 12,274 12,274 12,274
Avg 11,546 12,155 12,049.3 12,123.9 11,527.41 11,777.71 12,084.82 12,074.84 12,192.5 12,079.4 12,053.57 12,237.6
std dev 214.94 53.29 96.11 67.61 332.27 277.16 95.38 86.37 70.25 93.34 81.99 18.2

200_185_0.10_0.75 best 13,521 13,064 13,241 12,946 13,241 13,250 13,302 13,405 13,502 13,405 13,405 13,405 13,521
Avg 12,492.5 13,064.4 11,861.5 12,940.7 12,657.65 12,766.38 13,286.56 13,226.28 13,306.6 13,282.3 13,280.78 13,429.8
std dev 320.03 99.57 324.65 205.7 319.58 304.82 93.18 150.92 60.96 102.88 123.63 44.1

200_185_0.15_0.85 best 14,215 13,671 13,829 13,671 13,671 13,858 13,993 14,044 14,044 14,215 14,215 14,215 14,215
Avg 12,802.9 13,359.2 12,537 13,110 12,585.35 12,949.05 13,492.6 13,441.06 13,660.2 13,464.35 13,479.99 13,853.8
std dev 291.66 234.99 289.53 269.69 302.66 325.58 328.72 324.96 274.76 358.97 358.56 149.9

300_285_0.10_0.75 best 11,563 10,553 10,428 9751 10,420 10,991 10,600 11,335 11,335 10,934 11,413 11,335 11,563
Avg 9980.87 9994.76 9339.3 9899.24 10,366.21 10,090.47 10,669.51 10,576.1 10,703.2 10,707.54 10,684.17 11,419.4
std dev 142.97 154.03 158.15 153.18 257.1 236.14 227.85 281.13 112.95 230.46 242.43 70.8

300_285_0.15_0.85 best 12,607 11,016 12,012 10,913 11,661 12,093 11,935 12,245 12,247 12,245 12,402 12,259 12,402
Avg 10,349.8 10,902.9 9957.85 10,499.4 10,901.59 10,750.3 11,607.1 11,490.26 12,037.5 11,646.23 11,606.32 12,263.4
std dev 215.13 449.45 276.9 403.95 508.79 524.53 477.8 518.81 296.02 517.63 492.99 61.7

400_385_0.10_0.75 best 11,484 10,083 10,766 9674 10,576 11,321 10,698 11,484 11,484 11,337 11,484 11,484 11,484
Avg 9641.85 10,065.2 9187.76 9681.46 10,785.74 9946.96 10,915.87 10,734.62 11,062 10,884.49 10,880.22 11,461.3
std dev 168.94 241.45 167.08 275.05 361.45 295.28 367.75 371.37 273.63 396.92 386.79 48.9

400_385_0.15_0.85 best 11,209 9831 9649 8978 9649 10,435 10,168 10,710 10,710 10,431 10,710 10,757 11,209
Avg 9326.77 9135.98 8539.95 9020.87 9587.72 9417.2 9864.55 9735 10,017.9 9894.54 9900.01 10,971.8
std dev 192.2 151.9 161.83 150.99 360.29 360.03 315.38 370.44 207.98 329.34 325.03 164.4

500_485_0.10_0.75 best 11,771 11,031 10,784 10,340 10,586 11,540 11,258 11,722 11,722 11,722 11,722 11,771 11,729
Avg 10,567.9 10,452.2 9910.32 10,363.8 10,921.58 10,565.9 11,184.51 11,111.63 11,269.4 11,276.49 11,338.26 11,636.2
std dev 123.15 114.35 120.82 93.39 351.69 260.32 322.98 355.18 275.37 347.99 351.46 38.3

500_485_0.15_0.85 best 10,238 9472 9090 8759 9191 9681 9756 10,022 10,059 9770 10,194 10,194 10,217
Avg 8692.67 8857.89 8365.04 8783.99 9013.09 8779.44 9299.56 9165.26 9354.28 9339.8 9398.07 9916.4
std dev 180.12 94.55 114.1 131.05 204.85 300.11 277.62 282.55 212.69 252.98 266.46 99.8

100_100_0.10_0.75 best 14,044 14,044 13,860 13,860 13,814 14,044 13,963 14,044 14,044 14,044 14,044 14,044 13,990
Avg 13,806 13,734.9 13,547.2 13,675.9 13,492.71 13,739.71 13,854.71 13,767.23 13,912.5 13,861.35 13,847.86 13,952.8
std dev 144.91 70.76 119.11 119.53 325.34 119.52 96.23 131.59 84.55 84.62 100.33 11.4

100_100_0.15_0.85 best 13,508 13,145 13,508 13,498 13,407 13,407 13,498 13,508 13,508 13,508 13,508 13,508 13,508
Avg 12,234.8 13,352.4 13,103.1 13,212.8 12,487.88 12,937.53 13,347.58 13,003.62 13,439.1 13,312.57 13,297.37 13,337.8
std dev 388.66 155.14 343.46 287.45 718.23 417.91 194.34 375.74 44.86 189.12 172.16 148.3

200_200_0.10_0.75 best 12,522 11,656 11,846 11,191 11,535 12,271 11,972 12,522 12,522 12,522 12,350 12,522 12,522
Avg 10,888.7 11,194.3 10,424.1 10,969.4 11,430.23 11,232.55 11,898.73 11,586.26 12,171.6 11,852.44 11,906.97 12,330.6
std dev 237.85 249.58 197.88 302.52 403.33 349.39 391.83 419.09 220.68 371.57 382.91 101.1

200_200_0.15_0.85 best 12,317 11,792 11,521 11,287 11,469 11,804 12,167 12,317 11,911 12,187 11,993 12,317 12,317
Avg 10,827.5 10,945 10,345.9 10,717.1 11,062.06 11,026.81 11,584.64 11,288.25 11,746 11,612.07 11,594.9 11,975.1

Mathematics 2021, 9, 2611 14 of 19

Table 6. Cont.

Instance Results Best Known GA BABC ABCbin binDE bWSA gPSO* gPSO intAgents DH-jaya GWOfbd GWOrbd MLCSBO

std dev 334.43 255.14 273.47 341.08 423.9 421.22 275.32 410.54 181.18 217.13 301.1 140.4

300_300_0.10_0.75 best 12,817 12,055 12,186 11,494 12,304 12,644 12,736 12,695 12,695 12,695 12,784 12,695 12,817
Avg 11,755.1 11,945.8 10,922.3 11,864.4 12,227.56 11,934.64 12,411.27 12,310.19 12,569.3 12,441 12,446.21 12,716.4
std dev 144.45 127.8 182.63 160.42 308.11 293.83 225.8 238.32 114.13 247.67 227.47 69.2

300_300_0.15_0.85 best 11,585 10,666 10,382 9633 10,382 11,113 10,724 11,425 11,425 11,113 11,425 11,425 11,425
Avg 10,099.2 9859.69 9186.87 9710.37 10,216.71 9906.81 10,568.41 10,384 10,701.9 10,632.71 10,648.53 11,408.8
std dev 337.42 177.02 147.78 208.48 351.12 399.13 327.48 378.42 153.66 345.63 328.13 26.7

400_400_0.10_0.75 best 11,665 10,570 10,626 10,160 10,462 11,199 11,048 11,531 11,531 11,310 11,531 11,531 11,665
Avg 10,112.4 10,101.1 9549.04 9975.8 10,624.79 10,399.97 10,958.96 10,756.92 10,914.8 10,961.25 10,964.98 11,600.9
std dev 157.89 196.99 141.27 185.57 266.46 281.99 274.9 250.56 216.47 258.47 276.16 73.9

400_400_0.15_0.85 best 11,325 9235 9541 9033 9388 10,915 10,264 10,927 10,927 10,915 10,927 10,927 11,325
Avg 8793.76 9032.95 8365.62 8768.42 9580.64 9195.24 9845.17 9608.07 9969.9 9849.04 9873.27 11,271.2
std dev 169.52 194.18 153.4 212.24 411.83 311.9 358.91 363.72 287.61 343.9 373.7 62.4

500_500_0.10_0.75 best 11,249 10,460 10,755 10,071 10,546 10,827 10,647 10,888 10,960 10,960 10,921 10,960 11,078
Avg 10,185.4 10,328.5 9738.17 10,227.7 10,482.8 10,205.08 10,681.46 10,610.53 10,703.5 10,716.55 10,742.98 10,954.3
std dev 114.19 91.62 111.63 103.32 165.62 190.05 125.36 169.73 105.18 140.87 130.05 74.2

500_500_0.15_0.85 best 10,381 9496 9318 9262 9312 10,082 9839 10,194 10,381 10,176 10,194 10,194 10,209
Avg 8882.88 9180.74 8617.91 9096.13 9478.71 9106.64 9703.62 9578.89 9801.5 9758.61 9737.48 10,056.6
std dev 158.21 84.91 141.32 145.45 262.44 257.65 252.84 278.06 222.21 243.59 272.51 107.2

Mathematics 2021, 9, 2611 15 of 19

Table 7. Comparison between GA, BABC, ABC bin, gPSO*, gPSO, intAgents, DH-Jaya, GWOfbd, GWOrbd and MLCSBO algorithms for medium instances.

Instance Results Best Known GA BABC ABCbin binDE bWSA gPSO* gPSO intAgents DH-jaya GWOfbd GWOrbd MLCSBO

85_100_0.10_0.75 best 12,045 11,454 11,664 11,206 11,352 11,947 11,710 12,045 12,045 12,045 12,045 12,045 12,045
Avg 11,092.7 11,182.7 10,879.5 11,075 11,233.16 11,237.05 11,486.95 11,419.75 11,570.6 11,441.23 11,430.44 11,945.5
std dev 171.22 183.57 163.62 119.42 216.67 168.96 137.52 140.77 177.86 11172 127.56 126.6

85_100_0.15_0.85 best 12,369 12,124 12,369 12,006 12,369 12,369 12,369 12,369 12,369 12,369 12,369 12,369 12,369
Avg 11,326.3 12,081.6 11,485.3 11,875.9 11,342.7 11,684.46 11,994.36 11,885.21 12,318 11,917.83 11,942.93 12,253.1
std dev 417 193.79 248.33 336.94 474.76 353.79 436.81 431.67 181.92 442.25 418.72 81.6

185_200_0.10_0.75 best 13,696 12,841 13,047 12,308 13,024 13,505 13,298 13,696 13,696 13,696 13,647 13,696 13,696
Avg 12,236.6 12,522.8 11,667.9 12,277.5 12,689.09 12,514.72 13,204.26 13,084.52 13,350.2 13,121.23 13,125.85 13,651.7
std dev 198.18 201.35 177.14 234.24 336.51 356.2 366.56 388.39 182.56 365.41 367.06 36.1

185_200_0.15_0.85 best 11,298 10,920 10,602 10,376 10,547 10,831 10,856 11,298 11,298 11,298 11,298 11,298 11,298
Avg 10,351.5 10,150.6 9684.33 10,085.4 10,228.07 10,208.33 10,801.41 10,780.14 10,828.9 10,871.49 10,819.34 11,068.7
std dev 208.08 152.91 184.84 160.6 286.92 263.73 205.76 239.61 191.76 240.32 239.52 162.4

285_300_0.10_0.75 best 11,568 10,994 11,158 10,269 11,152 11,568 11,310 11,568 11,568 11,568 11,568 11,568 11,568
Avg 10,640.1 10,775.9 9957.09 10,661.3 11,105.09 10,761.96 11,317.99 11,205.72 11,327.7 10,001.33 10,014.47 11,546.0
std dev 126.84 116.8 141.48 149.84 197.78 199.43 182.82 258.49 166.91 174.62 215.35 13.5

285_300_0.15_0.85 best 11,802 11,093 10,528 10,051 10,528 11,377 11,226 11,517 11,517 11,401 11,590 11,763 11,763
Avg 10,190.3 9897.92 9424.15 9832.32 10,452.03 10,309.19 10,899.2 10,747.33 11,025.9 10,470.33 10,871.49 11,564.3
std dev 249.76 186.53 197.14 232.72 416.76 389.12 30036 334.25 208.08 340.47 332.09 129.2

385_400_0.10_0.75 best 10,600 9799 10,085 9235 9883 10,414 9871 10,483 10,326 10,414 10,397 10,483 10,600
Avg 9432.82 9537.5 8904.94 9314.57 9778.03 9552.14 10,013.43 9892.17 10,017 10,043.23 9902.72 10,400.7
std dev 163.84 184.62 111.85 191.59 221.49 234.1 202.4 179.19 141.15 163.95 180.32 47.3

385_400_0.15_0.85 best 10,506 9173 9456 8932 9352 10,077 9389 10,338 10,131 10,302 10,302 10,302 10,506
Avg 8703.66 9090.03 8407.06 8846.99 9203.52 8881.17 9524.98 9339.67 9565.72 9472.39 9455.24 10,162.0
std dev 154.15 156.69 148.52 210.91 303.12 283.3 286.16 288.88 237.9 242.25 261.75 172.7

485_500_0.10_0.75 best 11,321 10,311 10,823 10,357 10,728 10,835 10,595 11,094 11,094 10,971 10,989 11,097 11,125
Avg 9993.16 10,483.4 9615.37 10,159.4 10,607.21 10,145.26 10,687.62 10,603.53 10,754.8 10,702.72 10,725.26 10,965.3
std dev 117.73 228.34 151.41 198.49 191.86 199.99 168.06 204.99 112.69 154.92 160.001 96.2

485_500_0.15_0.85 best 10,220 9329 9333 8799 9218 9603 9807 10,104 10,104 9715 10,104 10,104 10,220
Avg 8849.46 9085.57 8347.82 8919.64 9141.94 8917.44 9383.28 9259.36 9467.8 9462 9455.24 10,095.7
std dev 141.84 115.62 122.65 168.9 180.42 267.49 241.01 268.33 106.55 229.88 261.74 74.1

Mathematics 2021, 9, 2611 16 of 19

Table 8. Comparison between BABC, DH-Jaya, and MLBO algorithms for large instances.

BABC DH-Jaya MLBO
Instance Best Known Best Avg Std tavg Best Avg Std tavg Best Avg Std tavg

600_585_0.10_0.75 9914 9098 9026.1 34.9 498.6 9640 9450.0 60.2 690.5 9721 9668.6 54.2 88.3
600_585_0.15_0.85 9357 8736 8540.5 20.5 172.5 9187 8998.5 79.2 881.3 9313 9045.9 119.6 320.5
700_685_0.10_0.75 9881 9311 9176.3 46.9 363.4 9790 9602.0 56.0 543.2 9736 9545.7 103.3 162.5
700_685_0.15_0.85 9163 8671 8397.4 87.7 302.6 9106 8894.1 140.5 426.1 9135 8834.1 106.7 356.7
800_785_0.10_0.75 9837 9275 9192.4 20.3 253.3 9771 9540.1 48.0 637.3 9470 9268 101.6 316.6
800_785_0.15_0.85 9024 8447 8366.5 72.0 254.3 8797 8649.0 63.0 236.8 8907 8611.9 66.3 200.9
900_885_0.10_0.75 9725 8953 8837.2 103.2 471.4 9455 9249.5 109.1 687.2 9454 9142 116.9 260.1
900_885_0.15_0.85 8620 8072 7881.2 88.5 228.4 8418 8244.5 87.9 316.6 8427 8120.5 186.2 264.3

1000_985_0.10_0.75 9668 9276 9254.2 27.9 640.5 9424 9306.9 45.0 309.9 9146 8642.4 242.3 202.5
1000_985_0.15_0.85 8453 8133 8099.1 25.4 648.2 8433 8280.5 90.9 312.6 8149 7755.7 223.7 234.0
600_600_0.10_0.75 10,524 10,207 9939.4 47.5 66.7 10,507 10,504.3 19.7 321.2 10,518 10,470.9 22.5 192.4
600_600_0.15_0.85 9062 8621 8361.8 101.3 455.5 8910 8785.6 43.5 572.0 8939 8891.3 31.7 570.6
700_700_0.10_0.75 9786 9078 9056.5 21.9 224.4 9512 9409.0 28.7 809.8 9786 9416.6 156.6 302.3
700_700_0.15_0.85 9229 8614 8290.2 77.6 126.8 9121 8985.5 65.9 507.7 9068 8786 140.9 244.1
800_800_0.10_0.75 9932 9517 9305.4 56.8 418.5 9890 9656.4 51.4 567.1 9679 9458.9 110.7 278.8
800_800_0.15_0.85 9101 8444 8163.8 132.7 376.7 8961 8774.2 59.8 161.7 8864 8433.7 175.9 276.7
900_900_0.10_0.75 9745 9290 9273.0 14.6 460.0 9526 9462.9 37.8 671.0 9533 9289.8 138.6 254.4
900_900_0.15_0.85 8990 8118 8114.5 9.2 151.0 8718 8492.9 62.3 702.7 8647 8233.4 279.8 250.5

1000_1000_0.10_0.75 9544 9030 8891.3 39.0 658.0 9348 9250.8 53.7 542.2 9062 8656.8 196.8 198.9
1000_1000_0.15_0.85 8474 7867 7627.8 44.9 635.0 8330 8037.9 71.9 932.6 8106 7767.3 189.1 318.6

585_600_0.10_0.75 10,393 9768 9677.8 81.9 535.9 10,300 10,161.5 72.8 98.2 10,001 9954 52.1 160.0
585_600_0.15_0.85 9256 8689 8623.8 28.5 461.9 9031 8944.2 61.7 616.6 9256 8921.7 122.6 246.4
685_700_0.10_0.75 10,121 9796 9627.4 73.2 248.7 10,070 9953.6 49.0 430.2 9914 9633.3 144.9 210.7
685_700_0.15_0.85 9176 8453 8424.9 4.8 958.7 9102 8860.8 106.4 160.0 9110 8828.6 85.9 282.2
785_800_0.10_0.75 9384 8765 8658.5 54.3 869.0 9123 8885.1 54.1 316.5 9039 8875.4 87.4 304.4
785_800_0.15_0.85 8746 8249 8021.9 117.1 577.0 8556 8482.3 51.5 604.6 8555 8280.5 108.4 310.1
885_900_0.10_0.75 9318 8938 8897.6 30.2 587.2 9137 9079.1 46.7 590.4 9019 8761.6 114.9 186.5
885_900_0.15_0.85 8425 7610 7518.0 50.5 869.7 8217 7881.4 65.8 140.9 8001 7766.7 134.6 326.2

985_1000_0.10_0.75 9193 8914 8741.3 101.8 739.9 9067 8994.5 45.0 313.1 8934 8435.7 190.5 148.1
985_1000_0.15_0.85 8528 8071 8066.5 15.2 486.5 8453 8425.3 48.7 504.0 8114 7600.7 287.6 190.4

Average 9352.3 8800.4 8668.4 54.3 458.0 9196.7 9041.4 62.5 486.8 9120.1 8836.6 136.4 255.3
p-value 3.5 × 10−6 0.008 0.02 5.7 × 10−5

Mathematics 2021, 9, 2611 17 of 19

5. Conclusions

In this research, a hybrid k-means cuckoo search algorithm has been proposed. This
hybrid binarization method applies the k-means technique to binarize the solutions gener-
ated by the cuckoo search algorithm. Additionally, in order for the procedure to be efficient,
it was reinforced with a greedy initialization algorithm and with a local search operator.
The proposed hybrid technique was used to solve cases of the set-union knapsack problem
on a medium and large scale. The role of binarization and local search operators was
investigated. To do this, a random operator was designed using two transition probabilities
Random03 and Random05 , which were compared in different situations. Finally, when
the proposed approach is compared with several state-of-the-art methods, it is observed
that the proposed algorithm is capable of improving the previous results in most cases. We
highlight that the proposed algorithm uses a general binarization framework based on k-
means and which can be easily adapt different metaheuristics and integrate with initiation
and local search operators and in this particular case solve SUKP giving reasonable results.

According to the behavior of MLCSBO, it is observed that in the first 30 instances, it
performed robustly, significantly outperforming the algorithms used in the comparison.
However, in the 30 largest instances, their efficiency was not as clear when compared to
the algorithms that had solved these instances. When it came to increasing the exploitation
capacity of the local search operator, increasing T, there were no improvements. The above
suggests three ideas for new lines of research. The first idea is to improve the search space
exploration, this can be achieved using different solution initiation mechanisms, in MLBO,
a greedy initialization operator was used. The second idea, thinking that the algorithm
could be trapped in local optimum, the incorporation of a perturbation operator can be
investigated. At this point, it can also consider the use of machine learning techniques
such as the k-nearest neighborhood. Finally, the last idea aims to explore other binarization
techniques based on other clustering algorithms or some other binarization strategies.

Author Contributions: J.G.: Conceptualization, investigation, methodology, writing—review and
editing, project administration, resources, formal analysis. J.L.-R., M.B.-R., F.A.: Conceptualization,
investigation, validation. B.C., R.S., J.-M.R., P.M., A.P.B., A.P.F., G.A.: Validation, funding acquisition.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by: José García was supported by the Grant CONICYT/FONDECYT/
INICIACION/ 11180056. PROYECTO DI INVESTIGACIÓN INNOVADORA INTERDISCIPLINARIA:
039.414/2021. José Lemus-Romani is supported by National Agency for Research and Develop-
ment (ANID)/ Scholarship Program/DOCTORADO NACIONAL/2019-21191692. Marcelo Becerra-
Rozas is supported by National Agency for Research and Development (ANID)/Scholarship Pro-
gram/DOCTORADO NACIONAL/2021-21210740. Broderick Crawford is supported by Grant
CONICYT / FONDECYT/REGULAR/1210810.Ricardo Soto is supported by Grant CONICYT/
FONDECYT/REGULAR/1190129. Broderick Crawford, Ricardo Soto, and Marcelo Becerra-Rozas
are supported by Grant Nucleo de Investigacion en Data Analytics/VRIEA/PUCV/039.432/2020.

Institutional Review Board Statement: Not applicable for studies not involving humans or animals.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: The data set used in this article can be obtained from: https://drive.
google.com/drive/folders/1aH11zXXBFtWbKjS9MlKxv-7eZjgcvCpL?usp=sharing, accessed on 14
October 2021. The results of the experiments are in: https://drive.google.com/drive/u/2/folders/
1xLY1Cu8loizh44oVa7vS0s4nqUAvhHNV, accessed on 14 October 2021.

Acknowledgments: José García was supported by the Grant CONICYT/FONDECYT/INICIACION/
11180056. PROYECTO DI INVESTIGACIÓN INNOVADORA INTERDISCIPLINARIA: 039.414/2021.
José Lemus-Romani is supported by National Agency for Research and Development (ANID)/ Schol-
arship Program/DOCTORADO NACIONAL/2019-21191692. Marcelo Becerra-Rozas is supported
by National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO
NACIONAL/2021-21210740. Broderick Crawford is supported by Grant CONICYT/FONDECYT/
REGULAR/1210810.Ricardo Soto is supported by Grant CONICYT/FONDECYT/REGULAR/1190129.

https://drive.google.com/drive/folders/1aH11zXXBFtWbKjS9MlKxv-7eZjgcvCpL?usp=sharing
https://drive.google.com/drive/folders/1aH11zXXBFtWbKjS9MlKxv-7eZjgcvCpL?usp=sharing
https://drive.google.com/drive/u/2/folders/1xLY1Cu8loizh44oVa7vS0s4nqUAvhHNV
https://drive.google.com/drive/u/2/folders/1xLY1Cu8loizh44oVa7vS0s4nqUAvhHNV

Mathematics 2021, 9, 2611 18 of 19

Broderick Crawford, Ricardo Soto, and Marcelo Becerra-Rozas are supported by Grant Nucleo de
Investigacion en Data Analytics/VRIEA/PUCV/039.432/2020.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Guo, H.; Liu, B.; Cai, D.; Lu, T. Predicting protein–protein interaction sites using modified support vector machine. Int. J. Mach.

Learn. Cybern. 2018, 9, 393–398. [CrossRef]
2. Korkmaz, S.; Babalik, A.; Kiran, M.S. An artificial algae algorithm for solving binary optimization problems. Int. J. Mach. Learn.

Cybern. 2018, 9, 1233–1247. [CrossRef]
3. Penadés-Plà, V.; García-Segura, T.; Yepes, V. Robust design optimization for low-cost concrete box-girder bridge. Mathematics

2020, 8, 398. [CrossRef]
4. Al-Madi, N.; Faris, H.; Mirjalili, S. Binary multi-verse optimization algorithm for global optimization and discrete problems. Int.

J. Mach. Learn. Cybern. 2019, 10, 3445–3465. [CrossRef]
5. Talbi, E.G. Combining metaheuristics with mathematical programming, constraint programming and machine learning. Ann.

Oper. Res. 2016, 240, 171–215. [CrossRef]
6. Tsao, Y.C.; Vu, T.L.; Liao, L.W. Hybrid Heuristics for the Cut Ordering Planning Problem in Apparel Industry. Comput. Ind. Eng.

2020, 144, 106478. [CrossRef]
7. Chhabra, A.; Singh, G.; Kahlon, K.S. Performance-aware energy-efficient parallel job scheduling in HPC grid using nature-inspired

hybrid meta-heuristics. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 1801–1835. [CrossRef]
8. Caserta, M.; Voß, S. Metaheuristics: Intelligent problem solving. In Matheuristics; Springer: Berlin, Germany, 2009; pp. 1–38.
9. Schermer, D.; Moeini, M.; Wendt, O. A matheuristic for the vehicle routing problem with drones and its variants. Transp. Res.

Part Emerg. Technol. 2019, 106, 166–204. [CrossRef]
10. Roshani, M.; Phan, G.; Roshani, G.H.; Hanus, R.; Nazemi, B.; Corniani, E.; Nazemi, E. Combination of X-ray tube and GMDH

neural network as a nondestructive and potential technique for measuring characteristics of gas-oil–water three phase flows.
Measurement 2021, 168, 108427. [CrossRef]

11. Roshani, S.; Jamshidi, M.B.; Mohebi, F.; Roshani, S. Design and Modeling of a Compact Power Divider with Squared Resonators
Using Artificial Intelligence. Wirel. Pers. Commun. 2021, 117, 2085–2096. [CrossRef]

12. Nazemi, B.; Rafiean, M. Forecasting house prices in Iran using GMDH. Int. J. Hous. Mark. Anal. 2020, 14, 555–568. [CrossRef]
13. Talbi, E.G. Machine Learning into Metaheuristics: A Survey and Taxonomy. ACM Comput. Surv. (CSUR) 2021, 54, 1–32.
14. Calvet, L.; de Armas, J.; Masip, D.; Juan, A.A. Learnheuristics: Hybridizing metaheuristics with machine learning for optimization

with dynamic inputs. Open Math. 2017, 15, 261–280. [CrossRef]
15. Crawford, B.; Soto, R.; Astorga, G.; García, J.; Castro, C.; Paredes, F. Putting continuous metaheuristics to work in binary search

spaces. Complexity 2017, 2017, 8404231. [CrossRef]
16. García, J.; Lalla Ruiz, E.; Voß, S.; Lopez Droguett, E. Enhancing a machine learning binarization framework by perturbation

operators: Analysis on the multidimensional knapsack problem. Int. J. Mach. Learn. Cybern. 2020, 11, 1951–1970. [CrossRef]
17. García, J.; Astorga, G.; Yepes, V. An analysis of a KNN perturbation operator: An application to the binarization of continuous

metaheuristics. Mathematics 2021, 9, 225. [CrossRef]
18. García, J.; Martí, J.V.; Yepes, V. The buttressed walls problem: An application of a hybrid clustering particle swarm optimization

algorithm. Mathematics 2020, 8, 862. [CrossRef]
19. García, J.; Yepes, V.; Martí, J.V. A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem.

Mathematics 2020, 8, 555. [CrossRef]
20. Goldschmidt, O.; Nehme, D.; Yu, G. Note: On the set-union knapsack problem. Nav. Res. Logist. 1994, 41, 833–842. [CrossRef]
21. Wei, Z.; Hao, J.K. Multistart solution-based tabu search for the Set-Union Knapsack Problem. Appl. Soft Comput. 2021, 105, 107260.

[CrossRef]
22. Ozsoydan, F.B.; Baykasoglu, A. A swarm intelligence-based algorithm for the set-union knapsack problem. Future Gener. Comput.

Syst. 2019, 93, 560–569. [CrossRef]
23. Liu, X.J.; He, Y.C. Estimation of distribution algorithm based on Lévy flight for solving the set-union knapsack problem. IEEE

Access 2019, 7, 132217–132227. [CrossRef]
24. Tu, M.; Xiao, L. System resilience enhancement through modularization for large scale cyber systems. In Proceedings of the 2016

IEEE/CIC International Conference on Communications in China (ICCC Workshops), Chengdu, China, 27–29 July 2016; pp. 1–6,
27–29.

25. Yang, X.; Vernitski, A.; Carrea, L. An approximate dynamic programming approach for improving accuracy of lossy data
compression by Bloom filters. Eur. J. Oper. Res. 2016, 252, 985–994. [CrossRef]

26. Feng, Y.; An, H.; Gao, X. The importance of transfer function in solving set-union knapsack problem based on discrete moth
search algorithm. Mathematics 2019, 7, 17. [CrossRef]

27. Wei, Z.; Hao, J.K. Kernel based tabu search for the Set-union Knapsack Problem. Expert Syst. Appl. 2021, 165, 113802. [CrossRef]
28. García, J.; Crawford, B.; Soto, R.; Castro, C.; Paredes, F. A k-means binarization framework applied to multidimensional knapsack

problem. Appl. Intell. 2018, 48, 357–380. [CrossRef]

http://doi.org/10.1007/s13042-015-0450-6
http://dx.doi.org/10.1007/s13042-017-0772-7
http://dx.doi.org/10.3390/math8030398
http://dx.doi.org/10.1007/s13042-019-00931-8
http://dx.doi.org/10.1007/s10479-015-2034-y
http://dx.doi.org/10.1016/j.cie.2020.106478
http://dx.doi.org/10.1007/s12652-020-02255-w
http://dx.doi.org/10.1016/j.trc.2019.06.016
http://dx.doi.org/10.1016/j.measurement.2020.108427
http://dx.doi.org/10.1007/s11277-020-07960-5
http://dx.doi.org/10.1108/IJHMA-05-2020-0067
http://dx.doi.org/10.1515/math-2017-0029
http://dx.doi.org/10.1155/2017/8404231
http://dx.doi.org/10.1007/s13042-020-01085-8
http://dx.doi.org/10.3390/math9030225
http://dx.doi.org/10.3390/math8060862
http://dx.doi.org/10.3390/math8040555
http://dx.doi.org/10.1002/1520-6750(199410)41:6<833::AID-NAV3220410611>3.0.CO;2-Q
http://dx.doi.org/10.1016/j.asoc.2021.107260
http://dx.doi.org/10.1016/j.future.2018.08.002
http://dx.doi.org/10.1109/ACCESS.2019.2940538
http://dx.doi.org/10.1016/j.ejor.2016.01.042
http://dx.doi.org/10.3390/math7010017
http://dx.doi.org/10.1016/j.eswa.2020.113802
http://dx.doi.org/10.1007/s10489-017-0972-6

Mathematics 2021, 9, 2611 19 of 19

29. Lister, W.; Laycock, R.; Day, A. A Key-Pose Caching System for Rendering an Animated Crowd in Real-Time; Computer Graphics
Forum; Wiley Online Library: Hoboken, NJ, USA, 2010; Volume 29, pp. 2304–2312.

30. Arulselvan, A. A note on the set union knapsack problem. Discret. Appl. Math. 2014, 169, 214–218. [CrossRef]
31. Wei, Z.; Hao, J.K. Iterated two-phase local search for the Set-Union Knapsack Problem. Future Gener. Comput. Syst. 2019,

101, 1005–1017. [CrossRef]
32. He, Y.; Xie, H.; Wong, T.L.; Wang, X. A novel binary artificial bee colony algorithm for the set-union knapsack problem. Future

Gener. Comput. Syst. 2018, 78, 77–86. [CrossRef]
33. Feng, Y.; Yi, J.H.; Wang, G.G. Enhanced moth search algorithm for the set-union knapsack problems. IEEE Access 2019,

7, 173774–173785. [CrossRef]
34. Wu, C.; He, Y. Solving the set-union knapsack problem by a novel hybrid Jaya algorithm. Soft Comput. 2020, 24, 1883–1902.

[CrossRef]
35. Zhou, Y.; Zhao, M.; Fan, M.; Wang, Y.; Wang, J. An efficient local search for large-scale set-union knapsack problem. Data Technol.

Appl. 2020.
36. Gölcük, İ.; Ozsoydan, F.B. Evolutionary and adaptive inheritance enhanced Grey Wolf Optimization algorithm for binary

domains. Knowl.-Based Syst. 2020, 194, 105586. [CrossRef]
37. Crawford, B.; Soto, R.; Lemus-Romani, J.; Becerra-Rozas, M.; Lanza-Gutiérrez, J.M.; Caballé, N.; Castillo, M.; Tapia, D.; Cisternas-

Caneo, F.; García, J.; et al. Q-Learnheuristics: Towards Data-Driven Balanced Metaheuristics. Mathematics 2021, 9, 1839.
[CrossRef]

38. Lanza-Gutierrez, J.M.; Crawford, B.; Soto, R.; Berrios, N.; Gomez-Pulido, J.A.; Paredes, F. Analyzing the effects of binarization
techniques when solving the set covering problem through swarm optimization. Expert Syst. Appl. 2017, 70, 67–82. [CrossRef]

39. He, Y.; Wang, X. Group theory-based optimization algorithm for solving knapsack problems. Knowl.-Based Syst. 2021, 219, 104445.
[CrossRef]

40. García, J.; Moraga, P.; Valenzuela, M.; Pinto, H. A db-scan hybrid algorithm: an application to the multidimensional knapsack
problem. Mathematics 2020, 8, 507. [CrossRef]

41. Baykasoğlu, A.; Ozsoydan, F.B.; Senol, M.E. Weighted superposition attraction algorithm for binary optimization problems. Oper.
Res. 2020, 20, 2555–2581. [CrossRef]

42. Ozsoydan, F.B. Artificial search agents with cognitive intelligence for binary optimization problems. Comput. Ind. Eng. 2019,
136, 18–30. [CrossRef]

http://dx.doi.org/10.1016/j.dam.2013.12.015
http://dx.doi.org/10.1016/j.future.2019.07.062
http://dx.doi.org/10.1016/j.future.2017.05.044
http://dx.doi.org/10.1109/ACCESS.2019.2956839
http://dx.doi.org/10.1007/s00500-019-04021-3
http://dx.doi.org/10.1016/j.knosys.2020.105586
http://dx.doi.org/10.3390/math9161839
http://dx.doi.org/10.1016/j.eswa.2016.10.054
http://dx.doi.org/10.1016/j.knosys.2018.07.045
http://dx.doi.org/10.3390/math8040507
http://dx.doi.org/10.1007/s12351-018-0427-9
http://dx.doi.org/10.1016/j.cie.2019.07.007

	Introduction
	The Set Union Knapsack Problem
	The Machine Learning Cuckoo Search Algorithm
	Greedy Initialization Operator
	Machine Learning Binarization Operator
	Local Search Operator

	Results
	Parameter Setting
	Insight into Binary Algorithm
	Algorithm Comparisons

	Conclusions
	References

