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Abstract: Arsenic (As), a semimetal toxic for humans, is commonly associated with serious health
problems. The most common form of massive and chronic exposure to As is through consumption
of contaminated drinking water. This study aimed to isolate an As resistant bacterial strain to
characterize its ability to oxidize As (III) when immobilized in an activated carbon batch bioreactor
and to evaluate its potential to be used in biological treatments to remediate As contaminated
waters. The diversity of bacterial communities from sediments of the As-rich Camarones River,
Atacama Desert, Chile, was evaluated by Illumina sequencing. Dominant taxonomic groups (>1%)
isolated were affiliated with Proteobacteria and Firmicutes. A high As-resistant bacterium was selected
(Pseudomonas migulae VC-19 strain) and the presence of aio gene in it was investigated. Arsenite
detoxification activity by this bacterial strain was determined by HPLC/HG/AAS. Particularly when
immobilized on activated carbon, P. migulae VC-19 showed high rates of As(III) conversion (100%
oxidized after 36 h of incubation). To the best of our knowledge, this is the first report of a P. migulae
arsenite oxidizing strain that is promising for biotechnological application in the treatment of arsenic
contaminated waters.

Keywords: arsenic; arsenite-oxidizing; biofilm; detoxification

1. Introduction

Arsenic (As) is a metalloid present in the atmosphere, soil and water as the result
of various natural processes, such as land erosion and volcanic emissions, as well as the
consequence of anthropogenic activities [1]. This element is present in many natural
environments, typically in the form of inorganic As combined with other elements, such as
oxygenated and sulfate-rich mineral waters [2–4]. In neutral pH water, two major forms of
inorganic As can be found: the reduced form as trivalent arsenite and the oxidized form as
pentavalent arsenate. Both the reduced and oxidized forms of As are toxic, but arsenite is
on the average 100 times more toxic and it is also more mobile than arsenate [5–7].

The toxicity of arsenite is due to its strong binding affinity for sulfhydryl groups
in proteins, thus affecting the redox status of the cysteine residues present on active
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sites of many enzymes and impairing their activities [5,8]. Arsenite also reacts with
dithiol groups of glutathione, glutaredoxin and thioredoxin, interfering with intracellular
redox homeostasis, DNA synthesis and repair and protein folding [8]. On the other
hand, since arsenate is a natural analogue of the phosphate molecule, it can compete
with phosphate in various biological processes [5,8–10]. In addition, arsenate uncouples
oxidative phosphorylation, disrupts ATP synthesis and impairs various ATP-dependent
cellular processes, such as transport, glycolysis, the pentose phosphate pathway and
signal transduction pathways [11]. The chronic exposure to As (for example in drinking
water) may cause severe health problems. The International Agency for Research on
Cancer, the United States Department of Health and Human Services and the United States
Environmental Protection Agency have classified inorganic arsenic as carcinogenic for
humans, increasing the risk of skin, liver, bladder and lung cancers [12–15].

As-contaminated drinking water has been identified in different parts of the world,
including Bangladesh, China, India, Pakistan and the U.S.A., affecting millions of peo-
ple due toxicity [2,16,17]. In Chile, the problem of chronic arsenicism affects around
50,000 persons, mainly in rural populations of the Atacama Desert [18,19]. The affected
populations drink water from small waterfalls and rivers with arsenic contents greater than
1000 ug/L [20,21]. This situation greatly surpasses both the World Health Organization
and the U.S. Environmental Protection Agency recommendations for As concentrations
(up to 10 ug/L) [22].

As-removal by conventional technologies (electro/coagulation, filtration, lime soften-
ing, activated alumina adsorption, ion exchange, reverse osmosis, electrodialysis reversal
and nanofiltration) is a process able to remove nearly 80–95% of the As. These methodolo-
gies generally make use of a two-step method involving the oxidation of As(III) followed
by the adsorption of the As(V) produced [23–26]. However, the strong chemical oxidants
used in these processes are high-priced and may generate secondary pollutants [3,16].

Several metabolic pathways are involved in bacterial arsenate reduction (arsABC
and arrAB) and arsenite oxidation (aio and arx), both under aerobic and anaerobic condi-
tions [6,8,12]. In particular, arsenite oxidase, enzyme catalyzing As(III) oxidation has been
characterized in both autotrophic and heterotrophic bacteria, and contains two heterolo-
gous subunits: a large catalytic subunit (AioA) that contains the molybdenum cofactor
together with a 3Fe–4S cluster, and a small subunit (AioB) that contains a Rieske 2Fe–2S
cluster [4,8]. Microorganisms inducing oxidation of arsenite in aqueous phase into the
less mobile and less toxic arsenate has been known for many years and members of no
less than nine bacterial genera, including alpha, beta and gamma Proteobacteria; Deinocci
(Thermus) and Crenarchaeota, have being involved in this process [27–31]. Thus, biological
oxidation of arsenite has the potentiality to bioremediate As-contaminated waters, making
it a promising alternative to the traditional chemical oxidants. Hence, bacteria capable to
oxidize arsenite must be considered as at least part of the solution. Therefore, the aim of
this study was to characterize natural community arsenic resistant of Camarones river and
isolate a bacterial strain resistant to As and to evaluate its capability to oxidize arsenite in
planktonic and sessile (biofilm) conditions. All this data is required to consider the possible
use of an As-resistant selected bacterial strain to implement a biological treatment system
to bioremediate arsenite contaminated water.

2. Materials and Methods
2.1. Sampling

Sediments samples were collected from the Camarones river (18◦59′46.8′′ S 69◦46′33.0′′ W),
in triplicate, from the surface up to a depth of 10 cm using 15 cm long and 3 cm diameter
sterile cores. After the collection, the sample was maintained at 4 ◦C while transported to
the laboratory. The superficial layer, 2 cm, of each sample was mechanically homogenized
within a laminar flow hood (ZHJH-C 1109C, Zhicheng, Korea) and stored at 4 ◦C in
RNAlater (Invitrogen-Thermo Fisher Scientific, CA, USA) for further processing.
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2.2. Analysis of the Bacterial Community Composition

Total DNA from 1 g of the upper 2 cm layer of the sediment sample (mix of the three
replicas) was extracted using the UltraClean DNA extraction kit (MO BIO Laboratories
Inc., Carlsbad, CA, USA) following the protocol provided by the manufacturer. DNA
extracts were then purified. The quality and concentration of DNA was checked by UV/Vis
spectroscopy (NanoDrop ND-1000, Peq-lab, Erlangen, Germany). The DNA was sequenced
at the Greehey Children’s Cancer Research Institute Next Generation Sequencing Facility,
UT Health Science Center, University of Texas System, San Antonio, TX, USA. Sequencing
was achieved using the Illumina MiSeq technology with pair end reads, targeting the V1-V2
region of 16S rRNA with primers 27F/338R (forward primer: 5′-AGA GTT TGA TCM TGG
CTC AG-3′, reverse primer: 5′-GCT GCC TCC CGT AGG AGT-3′).

The Mothur software v.1.33.3 (www.mothur.org (accessed on 10 December 2020)) was
used for pre-processing the sequenced data, including quality check, removal of duplicates,
alignments to SILVA database (http://www.arb-silva.de (accessed on 10 December 2020)),
denoising and chimera removal. Then, Mothur was used for distances calculation and
clustering of the sequences into OTUs with a distance of 0.03. For taxonomic assignment,
the RDP classifier version 2.7 and SILVA database with a threshold of 0.8 were used. For
statistical analysis, we used the R statistical software version 3.1.0 [32].

2.3. Isolation of Arsenic Resistant Bacterial Strains

One g of the top 2 cm layer of the sediment was inoculated into 50 mL chemically
defined medium (CDM) [33] (pH 8.0) containing 100 mg L−1 Na3AsO3 (Sigma-Aldrich,
San Luis, MO, USA) and incubated at 30 ◦C for 48 h, on a shaker adjusted at 130 rpm, in
darkness, according to Campos et al. [34]. Bacteria were then isolated in and CDM agar
plates supplemented with arsenite (0.5 mM). The plates were incubated at 30 ◦C, for 48 h,
in darkness.

2.4. Tolerance Levels to Arsenic (TLA)

The Tolerance levels to arsenic (TLA) for the isolates was determined by the agar dilu-
tion technique, on Luria Bertani (LB) agar (Becton Dickinson and Company, Maryland, MO,
USA) plates supplemented with different concentrations of sodium arsenite (0.5–100 mM)
(Sigma-Aldrich, San Luis, MO, USA) or sodium arsenate (0.5–1000 mM) (Sigma-Aldrich,
San Luis, USA). Each plate was inoculated with cell suspensions from fresh pre-cultures at
a final density of approximately 107 colony forming units (CFU) mL−1 and incubated for
24 h at 25 ◦C. To be used as control, LB agar plates were seeded with bacteria but without
the metalloid. The criterion to consider bacterial strains as resistant or sensitive to As(III)
or (As(V) was the one described by Rokbani et al. [35]. The bacterial strain capable to
tolerate the highest arsenite and arsenate concentrations was selected to perform all the
following experiments.

2.5. Identification of the Selected Strain and Aio Gene Detection Based on Molecular Characterization

The As resistant bacterial strain selected was identified after polymerase chain reaction
(PCR) amplification of its 16S rRNA gen. The DNA was extracted using the InstaGen Matrix
kit (BIO-RAD, Hercules, CA, USA) following the directions of the manufacturer. PCR was
done using 16S rDNA bacteria universal primers GM3 (AGAGTTTGATCMTGGC) and
GM4 (TACCTTGTTACGACTT). The PCR procedure followed the description of Urdiain
et al. [36]. To detect the arsenite oxidase, a PCR analysis was performed using degenerated
primer which target the large subunit of arsenite oxidase 69F (5′-TGYA TYGT NGGN
TGYG GNTA YMA-3′) and 1374R (5′-TANC CYTC YTGR TGNC CNCC-3′), which target
the large subunit of arsenite oxidase, according to Valenzuela et al. [21]. Sequencing was
conducted by means of the Sanger’s method using an ABI PRISM 3500 xL Genetic Analizer
(Applied Biosystems, Foster City, USA). The sequences were analysed by means of Basic
Local Alignment Search Tools (BLAST) (http://www.ncbi.nlm.nih.gov/BLAST (accessed
on 10 December 2020)) to obtain sequences with the greatest significant alignment.

www.mothur.org
http://www.arb-silva.de
http://www.ncbi.nlm.nih.gov/BLAST
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2.6. Effect of As(III) and As(V) on the Growth of the Selected Bacterial Strain

The selected bacterial strain (~104 CFU mL−1) was inoculated into 50 mL CDM
medium supplemented with 0.5 mM As(III) or As(V) and then incubated under aerobic
conditions at 30 ◦C under agitation (130 rpm) for 48 h. A control was implemented
without the addition of As and incubated under the same conditions described above.
The experiments were performed in triplicate and growth was determined recording the
number of CFU at regular time intervals. The curves obtained were analysed, making use
of the mathematical modelling of Gompertz [37]. Graphs and models were made using
GraphPad Prism version 5.0 (GraphPad software, San Diego, CA, USA).

2.7. Attachment of the Selected Strain to Inert Support (Biofilm Formation)

The biofilm was formed placing sterile activated carbon and CDM (5:100 w/v) in
250 mL flasks. Then, an inoculum (105 CFU mL−1) of the selected strain was added and
cultured at 30 ◦C, with agitation (130 rpm), for 72 h under aerobic conditions, in the
presence or absence of 0.5 mM As(III). The experiments were performed in triplicate and
biofilm formation was evaluated by total cell counts using fluorescence microscopy and by
scanning electron microscopy (SEM).

2.8. Scanning Electron Microscopy (SEM)

Samples of activated carbon were fixed using 2.5% glutaraldehyde (Sigma-Aldrich,
San Luis, USA). Samples were dehydrated with ethanol and critical point dried using CO2.
Then, they were coated with gold using an Edwards S150B sputter coater (Edwards High
Vacuum International, West Sussex, UK) [38]. Samples were analysed using a JEOL JSM
6380LV SEM (JEOL, Tokyo, Japan).

2.9. Fluorescence Microscopy

One g of activated carbon samples were sonicated in 10 mL phosphate-buffered saline
(PBS) (pH 7.0) in an ultrasonic bath (Elma/S30, Singen, Germany) adjusted at 100 W for
2 min, fixed in formaldehyde solution (4% w/v) and then filtered using white polycarbonate
membranes (0.2 µm, Ø47 mm). Then, 4,6-diamino-2-phenylin doldihydrochloride dilactate
(DAPI) (Sigma-Aldrich, San Luis, MO, USA) staining (1 mg mL−1) was added [39]. Samples
were taken in triplicates and biofilms were evaluated on the basis of bacterial cells counted,
using a Motic BS-310 epifluorescence microscope equipped with a MotiCam Pro 285A
digital camera (Motic, Richmond, Canada).

2.10. Oxidation of As(III) to As(V) by the Selected Strain under Planktonic and
Immobilized Conditions

The oxidation of As by the selected strain under planktonic and immobilized con-
ditions was studied using 500 mL glass bottles, as batch bioreactors, containing 250 mL
CDM plus 0.5 mM sodium arsenite (NaH2AsO3). The free cells (planktonic) bioreactor
was inoculated with 106 CFU mL−1 of the selected strain. The immobilized cells bioreactor
was inoculated with 10 g of a biofilm (108 cells/g) of the selected strain obtained after 72 h
previous incubation on active carbon at 25 ◦C [40]. Both batch bioreactors were incubated
under aerobic conditions at 25 ◦C during 48 h. The experiments were performed in tripli-
cate and oxidation of As(III) to As(V) was determined from culture supernatants aseptically
removed from the reactors. One mL supernatant samples were filtered through a sterile
0.22 µm pore size filter (Corning Inc., New York, NY, USA) and As-species were detected by
means of high-performance liquid chromatography coupled to arsine gaseous formation
performing the detection by atomic absorption (HPLC/HG/QAAS) [19]. The quantitative
determination of both arsenic species (As(III) and As(V)) was performed using an atomic
absorption spectrometer (AAnalyst 100, PerkinElmer, Norwalk, CT, USA), equipped with
a commercial hydride generation system (FIAS-100, PerkinElmer, Norwalk, CT, USA) and
a quartz cell (15 cm length, 1 cm i.d.) associated to an acetylene flame served as atomiser.
An externally controlled by An EDL power supply system (EDL System 2, PerkinElmer,
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Norwalk, CT, USA) allowed to control an electrode-less arsenic lamp used as emission
source [19].

2.11. Statistical Analysis

Bacterial biotransformation and growth rates (K) of the models that best conformed to
the kinetics of bacterial growth were analysed through Student’s t tests using the MINITAB
software (version 15, USA). P values < 0.05 were considered as statistically significant.

3. Results
3.1. Sequencing Data and Diversity Estimates

The sequencing analysis of the universal V1-V2 region of the 16S rRNA for Bacteria Do-
main produced a total of 295,530 sequences. After quality check within the SILVA database
and removing chimeras, 294,104 (99.4%) high quality sequences remained (Table 1). The
Shannon diversity index and non-parametric Chao1 and ACE richness estimators are
reported in Table 1, showing a normal diversity.

Table 1. Sequencing information, diversity index (H’) and estimator of richness (Chao1 and ACE)
obtained after Illumina sequencing.

Number of Reads 295,530
Number of High-Quality Reads 294,104

Unique Reads 20,236
% Unique Reads 6.88%

Shannon (H’) 2.365
OTUs at 97% (genetic sim) 4520

Chao1 (TC%) 77,582.439
ACE (TC%) 86,400.014

Number of Bacteria Sequences 18,080

3.2. Composition of the Bacterial Community

The OTUs retrieved from the Camarones river superficial sediment sample showed
the presence of a total of 17 different bacterial phyla. The dominant taxonomic groups
(abundance ≥ 1%) were affiliated to Proteobacteria and Firmicutes (76.6% and 21.9%, respec-
tively) (Figure 1). Within Proteobacteria, the most abundant class was Gammaproteobacteria
(73.43%) and another four classes were also present, including two classes representing
minor components (0.44% and 0.2%) (Table 2). Among the phyla whose abundance was
≤1%, OTUs affiliated to fifteen different phyla, with abundances varying from 0.46%
(Acidobacteria) to 0.02%, were identified (Table 2).

3.3. Isolation and Characterization of Bacterial Arsenic-Resistant

After culturing in the presence of As, a total of 11 different As-resistant strains were
isolated from the sediment. All bacterial strains isolated were able to grow on agar contain-
ing either 7 mM As(III) or 20 mM As(V) at 25 ◦C, concentrations allowing to considered
these strains as As-resistant [35].

One of the bacterial strains, labelled as VC-19, was able to grow at As concentra-
tions exceeding 20 mM As(III) and 100 Mm As(V). Sequencing of PCR product (1200 bp)
demonstrated the presence of the arsenite oxidase aio gene in this strain. The biochemical
profile of this strain and the closest GenBank match to its 16S rDNA sequence revealed
that VC-19 strain (GenBank Accession Number MG545624) possessed a high degree of
similarity (99.8%) with Pseudomonas migulae. Moreover, the tree reconstruction affiliated
VC-19 strain to Pseudomonas genus, ratifying that the analysed sequence of this strain can
be ascribed to P. migulae (Figure 2).
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Table 2. Dominant phylogenetic groups present in the sediment of Camarones river, Atacama Desert.

Phylogenetic Group Relative Abundance (%)

Dominant Phylogenetic Groups (≥1%)

Proteobacteria 76.57
Zetaproteobacteria 0.02

Alphaproteobacteria 1.33
Betaproteobacteria 1.26
Deltaproteobacteria 0.44

Gammaproteobacteria 73.43

Firmicutes 21.92

Dominant Phylogenetic Groups (≤1%)

Acidobacteria 0.46
Actinobacteria 0.35
Bacteroidetes 0.11
Chloroflexi 0.11
Tenericutes 0.09
Nitrospirae 0.09

Thermodesulfobacteria 0.07
Gemmatimonadetes 0.04

Planctomycetes 0.04
Aquificae 0.02

Caldiserica 0.02
Acetothermia 0.02

BRC1 0.02
Cyanobacteria/Chloroplast 0.02

Omnitrophica 0.02

3.4. Growth Kinetics

In order to determine the effect of As on the growth of P. migulae VC-19 strain, its
growth kinetics was studied in the presence of 0.5 mM As(III) or As(V) or its absence by
means of the Gompertz model. The model demonstrated that after of 48 h of incubation
this bacterial strain cultured in the presence of 0.5 mM As(III) showed a better growth than
the control, with a growth rate (µm) of 0,88 and 0,79 h−1, respectively (Figure 3). Student’s
t test (with 95% confidence) demonstrated statistically significant differences between both
conditions (p < 0.05). When cultured in the presence of 0.5 mM As (V), P. migulae VC-19
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strain showed a growth rate (µm) of 0.78 h−1, significantly lower than in the presence of As
(III) Figure 3).
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adjusted with Gompertz growth.

3.5. Biofilm Formation in a Batch Experiment by P. migulae VC-19

The ability of 105 CFU mL−1 of P. migulae VC-19 strain growing in the exponential
phase to adhere to activated carbon in the presence or absence of As(III) was monitored by
fluorescence microscopy and SEM. The number of bacterial cells per gram of carbon was
evaluated up to 72 h of culture by fluorescence microscopy. Both, with or without As(III),
the bacterial strain formed a stable biofilm containing 109 and 108 cells g−1 of activated
carbon, respectively (Figure 4). P. migulae VC-19 strain, cultured in the presence of As(III)
showed similar growth rate (µm) than the control, 0,60 [CFU h−1] under both conditions
(p > 0.05). In the presence of As(V), the biofilm presented a stable growth, similar to that of
the control culture and the culture containing As (III).
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Besides monitoring cell counts by fluorescence microscopy, biofilm formation by
P. migulae VC-19 strain on activated carbon was also monitored by SEM. In the presence
or absence of As(III), small cells were randomly distributed on the surface of activated
carbon after 24 h of incubation (Figures 5A and 6A). After 48 h of incubation, cultures with
or without As(III) showed bacteria anchored to the activated carbon and to each other
by means of fibrils, bridging the space between bacteria (Figures 5B and 6B). After 72 h
of incubation, both cultures in the presence or absence of As(III), a mature biofilm was
observed with attached bacteria associated to extracellular polysaccharides covering the
sessile cells and serving as a matrix for further biofilm formation and stabilizing it was
observed in both cultures. (Figures 5C and 6C).
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3.6. Arsenic Oxidation in Batch Experiments

Arsenite oxidation by planktonic or immobilized P. migulae cells was evaluated by
HPLC/HG/ASS. Immobilized P. migulae cells were able to oxidize 0.5 mM As(III), under
aerobic conditions, leading to 100% As(III) conversion into As(V) after 36 h of incubation, a
rate of 12.86 µg mL−1 h−1 (Figure 7).
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Planktonic P. migulae cells, cultured under similar conditions, were able to oxidize
100% As(III) to As(V) after 48 h, a rate of 10.07 µg mL−1 h−1 (Figure 8). A decrease of
total-As present in the supernatant, concomitant with the decrease of As (V), was also
observed in the batch experiments implemented with immobilized cells (Figure 7).
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4. Discussion

Certain aquatic environments are characterized by high concentrations of different
minerals. Because of its geological characteristics, the Andean plateau of the Atacama
Desert (Chile), including the Camarones river, naturally possesses high concentrations
of As (1000 ug/L) [19,20]. In particular, the presence of As in the Camarones river turns
it a potential source to isolate bacteria possessing strategies to survive in an As rich
environments [41]. These strategies may include As bioaccumulation, biomineralization,
biosorption, and biotransformation [42]. There are reports describing those bacterial
communities in As-rich groundwater and surface waters are dominated by Firmicutes,
Alpha-, Beta-, Gamma- and Epsilon-proteobacteria [43–47]. In our study, a massive parallel
sequencing analysis (Illumina) revealed a significant shift in the bacterial communities of
the As contaminated Camarones river sediment studied, where Proteobacteria and Firmicutes
were dominating groups (≥1% of total classified sequences). Similar results were reported
by Leon et al. [48], showing that the Camarones river, also part of the Atacama Desert,
possessed a higher relative abundance of Proteobacteria (40.3%), Firmicutes (24.82%) and
Acidobacteria (12.02%). The bacterial diversity reported by that report was also greater than
the one found in our work. The greater diversity reported for the Camarones river may
be the consequence of the “altiplanico winter” which causes very intense precipitations in
this zone, resulting in a severe downstream flow of water of high turbidity which carries
suspended solids [49].

Many reports describe a variety arsenic-resistant and transforming bacterial species
from aquatic environments and soil, being Proteobacteria species predominant [50,51]. Some
culturable bacterial species representative of these Phylum, such as those belonging to the
Pseudomonas genus, have been previously isolated from several environments, including
drinking water, and have demonstrated the ability to grow in higher As concentrations. In
our study, P. migulae VC-19 was able in grow in the presence of 20 mM As (III) and 100 mM
As (V). Dey et al. [52] reported the isolation of twelve colonies from ground-water resistant
to 100–5000 ppm arsenate and 100–1000 ppm arsenite. In addition, other bacterial genera,
such as Bacillus, klebsiella, Dienococcus, Acidthiobacillus and Desulfitobacterium have been
reported as arsenic resistant [53].

Since the growth curve of P. migulae VC-19 strain cultured in the presence of As
(III), when modelled by the Gompertz function, showed to grow better than the control.
Numerous heterotrophic As(III)-oxidizing bacteria, such as Hydrogenophaga sp. NT-14 and
A. tumefaciens GW4, have been reported to capable to obtain energy from the oxidation
of arsenite, using the metalloid as the electron source and carbonate as unique carbon
source [21,40,54–63]. However, As (III) oxidation by heterotrophic bacteria is generally
considered to be a detoxification mechanism rather than one that can support growth [64].
Zhang et al. [65] reported a novel chemoautotrophic As(III)-oxidizing bacterium, isolated
from an As-contaminated paddy soil, able to derive energy from the oxidation of As(III) to
As(V), under both aerobic and anaerobic conditions using O2 or NO3

− as electron acceptor.
When we studied the As (III) genetic resistance of P. migulae VC-19, by means of

PCR and subsequent sequencing, the presence of the As oxidizing aio gene was detected.
Structurally, the aio codified arsenite oxidase is composed of the minor AioB subunit and
the main AioA subunit (90–100 kDa), considered a molybdoprotein. The minor subunit
is considered to be the main responsible for the interaction with the electron transport
proteins (cytochrome). Since the genes encoding these cytochromes are expressed together
with the aioAB genes, both genes are generally in the same operon [25]. In addition, the
oxidation of highly toxic arsenite to less toxic arsenate encoded by arsenite oxidase aio gene
is a key step of the As-detoxification mechanism by microorganisms [66,67].

P. migulae VC-19 strain was able to produce a stable biofilm on active carbon in the
presence or absence of As(III). After 72 h of incubation, SEM analyses showed both in
presence or absence of As(III), micro-fibrillar structures and bacterial cells embedded by a
matrix probably constituted by extracellular polysaccharides, which has been previously
described for other microorganisms [68], and which are characteristic of a mature bacterial
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biofilm, in which extracellular polysaccharides are secreted by attached bacteria and serve
as a matrix for the attachment of other cells [69]. In addition, Decho [70] describe that
biofilm-mediated bioremediation presents advantage to bioremediation with planktonic
microorganisms because cells in a biofilm have a better adaptation, survival and high mi-
crobial biomass. Zeng et al. [71] describe that the biofilm formation significantly promoted
the bacterial resistance to arsenic.

Our study demonstrated that the immobilization of the P. migulae VC-19 strain on
activated carbon allowed the development and maintenance of a biofilm, which showed
increased oxidation rates than that of planktonic cells. Simeonova et al. [72], studying Her-
miniimonas arsenoxidans immobilized on calcium alginate, demonstrated that immobilized
cells oxidized arsenite faster than planktonic cells. Valenzuela et al. [40] reported similar
results studying the oxidation of arsenite to arsenate by Pseudomonas arsenicoxydans cells
immobilized on zeolite. Ito et al. [73] reported in continuous experiments, conducted using
a bioreactor with immobilised arsenite oxidising bacteria, an As(III) oxidation efficiency of
92%, with an As(III) oxidation rate of 1 × 10−9 µg/cell/min.

Wan et al. [74] investigating the combined processes of biological As (III) oxidation and
removal of metalloid by zero-valent iron, reported an incomplete As removal, associated to
kinetic limitation of As removal or by a continuous formation of iron corrosion products,
enable to trap As. In our study, the total arsenic decreases over time, due to a possible
adsorption of the metalloid on the activated carbon used as support for the P. migulae
VC-19 biofilm. Adsorption onto activated carbon has been described as one of the most
effective methods for heavy metal removal [75–77]. In general, microbial oxidation of As
(III) in bioreactors with immobilized biomass, followed by adsorption is a promising and
environment-friendly system for the treatment of As(III)-contaminated waters [78–81].

5. Conclusions

The results of the present study demonstrated that heterotrophic arsenite oxidising
bacteria, such as P. migulae, are good potential candidates for biological As-detoxification
systems. The reason is that As abatement requires, as an initial step, the oxidation of the
metalloid for its subsequent precipitation and removal. Therefore, making use of bacteria
for the biological oxidation of As may circumvent the requirement of strong chemical
oxidants, compounds which are usually even more toxic than arsenic itself.
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