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DYNAMICAL SYSTEMS SERIES B
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Abstract. We study a predator-prey model with Holling type I functional re-
sponse, an alternative food source for the predator, and multiple Allee effects

on the prey. We show that the model has at most two equilibrium points in the

first quadrant, one is always a saddle point while the other can be a repeller or
an attractor. Moreover, there is always a stable equilibrium point that corre-

sponds to the persistence of the predator population and the extinction of the

prey population. Additionally, we show that when the parameters are varied
the model displays a wide range of different bifurcations, such as saddle-node

bifurcations, Hopf bifurcations, Bogadonov-Takens bifurcations and homoclinic

bifurcations. We use numerical simulations to illustrate the impact changing
the predation rate, or the non-fertile prey population, and the proportion of

alternative food source have on the basins of attraction of the stable equilib-

rium point in the first quadrant (when it exists). In particular, we also show
that the basin of attraction of the stable positive equilibrium point in the first
quadrant is bigger when we reduce the depensation in the model.

1. Introduction. The goal of analysing the dynamics of complex ecological sys-
tems is to better describe the different interactions between species, to understand
their longterm behaviour, and to predict how they will respond to management
interventions [30, 38]. Current predator-prey dynamics studies often use nonlinear
mathematical models to describe the species’ interactions and answer these ques-
tions. These models aim to be representative of real natural phenomena and they
should capture the essentials of the dynamics. However, new theoretical, empirical,
and observational research in ecology is revealing species’ interactions to be much

2010 Mathematics Subject Classification. Primary: 65L07, 92B05; Secondary: 37C75.
Key words and phrases. May–Holling–Tanner model, strong Allee effect, multiple Allee effect,

bifurcations, homoclinic curve.
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more complicated than previous models admit [23, 24, 44, 48]. Moreover, it is be-
coming increasingly apparent that our understanding of ecosystem dynamics will
depend [51], to some extent, on the particular nature of these interaction processes,
such as the functional response or predation rate [12, 46, 48].

The standard approach for using models to understand ecological systems is to
construct a model from first principles, and then compare species’ abundance time-
series to the predictions from those models. However, this approach becomes more
difficult when we add additional nuance to standard models, making them more
complex, more nonlinear, and more difficult to parameterise. For instance, Graham
and Lambin [36] showed that field-vole (Microtus agrestis) survival can be affected
by reducing the weasel predation. They also demonstrated that weasel proportion
was suppressed in summer and autumn, while the voles (Microtus agrestis) popu-
lation always declined to low density. However, they argued that the underlying
model was too hard to study due to the large number of parameters. Some ecolo-
gists have attempted to resolve this issue by applying qualitative approaches, which
make few assumptions about the models’ functional forms or parameters [10, 33, 43].
However, we can also approach the problem by trying to understand the topology
of the associated dynamical system, rather than specific trajectories [42]. Such a
topological approach may offer general and global insights into the behaviour of the
system without requiring accurate parameter estimates.

The phenomena described above can be observed in predator-prey theory. The
original Lotka-Volterra predator prey models [35] were straightforward, with sim-
ple functional forms for species’ growth and interactions. Empirical observations
required successive changes to these assumptions, leading inter alia to the May–
Holling–Tanner model, which is itself a special case of the Leslie–Gower predator-
prey model [28, 45]. The May–Holling–Tanner model is described by an autonomous
two-dimensional system of ordinary differential equations, where the equations for
the growth of the predator and prey are logistic-type functions, where the predator
carrying capacity is a prey dependent [1, 19, 48]. The functional response describ-
ing the predation is Holling type I, which, for instance, models filter feeders where
searching for food can occur at the same time that the species processes the food [34].
A Holling type I response function corresponds to a linear increasing function in the
prey H(x) = qx [27]. This type of functional response is also called Lotka-Volterra
type. In particular, the model is given by

dx

dt
= rx

(
1− x

K

)
− qxy ,

dy

dt
= sy

(
1− y

nx

)
.

(1)

Here, x(t) and y(t) represent the proportion of the prey respectively predator pop-
ulation at time t; r is the intrinsic growth rate for the prey; s is the intrinsic growth
rate for the predator; q is the per capita predation rate; K is the prey carrying
capacity; n is a measure of the quality of the prey as food for the predator; and

K̃(x) = nx is the prey dependent carrying capacity of the predator.
However, even model (1) does not take into account that some predators act

as generalists [3, 18, 25]. For instance, weasels (Mustela nivalis) in the boreal
forest region in Fennoscandia can switch to an alternative food source, although
its population growth may still be limited by the fact that its preferred food, voles
(Microtus agrestis), are not available abundantly [24, 31, 48]. This characteristic can
be modelled by modifying the prey dependent carrying capacity of the predator [9].
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That is, in (1)

K̃(x) = nx is replaced by K(x) = nx+ c, (2)

where we assumed that the alternative food source is constant, which in turns means
that the predator proportion is small in compared to the alternative food source.
Model (1) with (2) was studied in [9, 5]. It was shown that, in comparison to the
original model (1), there is an extra equilibrium point on the y-axis corresponding
to the extinction of the prey but not the predator. Moreover, the nodependentn-
negative parameter c desingularises the origin of system (1).

Another effect that is not incorporated in (1) is the Allee effect [2]. The Allee
effect corresponds to a density-dependent phenomenon in which fitness growth ini-
tially increases as population density increases [11, 16, 32, 47]. This effect is usually
modelled by adding a factor (x−m) to the logistic function where m is the minimum
viable population [2, 49, 54, 55] and 0 < m < K. With the Allee effect included
in (1)

Lo(x) = rx
(

1− x

K

)
is replaced by Lm(x) = rx

(
1− x

K

)
(x−m) . (3)

For 0 < m < K, the per-capita grow rate of the the prey population with the
Allee effect included is negative, but increasing, for x ∈ [0,m), and this is referred
to as the strong Allee effect. When m ≤ 0, the per-capita growth rate is positive
but increases at low prey population densities and this is referred to as the weak
Allee effect [11, 15]. Additionally, the Allee effect can also refer to a decrease
in per capita fertility rate at low population densities or a phenomenon in which
fitness, or population growth, increases as population density increases [2, 16, 32,
47]. For instance, Ostfeld and Canhan [40] found that the stabilisation of vole
(Microtus agrestis) populations in southeastern New York depends on the variation
in reproductive rate and recruitment of the population. This effect is referred to as
the multiple Allee effect [11], sometimes also called the double Allee effect [4, 22].
To incorporate this multiple Allee effect in (3) Lm(x) is replaced by

Lb(x) = rx
(

1− x

K

)( 1

x+ b

)
(x−m) . (4)

Here, b is the non-fertile prey population and 0 < m < K [2, 49, 54, 55]. The per-
capita growth rate for the logistic growth function, strong and weak Allee effect; and
the multiple Allee effect are shown in Figure 1. We observe that the multiple Allee
effect reduces the region of depensation, that is, the region where the per-capita
growth rate is positive and growing, when compared to the strong Allee effect.
This effect can be generated by the reduction of the probability of fertilisation at
lower population density [34]. This reduction commonly occurs in plants such as
Diplotaxis erucoides, Banksia goodii and Clarkia concinna [34]. IIn particular, the
depensation region for the multiple Allee effect is given by (m,x1) with

x1 = −b+
√

(b+K)(b+m) , (5)

and for the strong Allee effect by (m,x2) with

x2 =
1

2
(K +m) , (6)

and x1 ≤ x2 for all values of b, see Figure 1.
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Figure 1. In the left panel, we show the per capita growth rate of
the logistic function (blue line), the strong Allee effect with m = 0.1
(red curve), the weak Allee effect with m = −0.1 (orange curve),
multiple Allee effects with m = 0.1 and b = 0.15 (grey curve) and
multiple Allee effects with m = 0.1 and b = 0.05 (green curve).
In the right panel, we show the size of the depensation region for
the strong Allee effect (6) (red curve) and for the multiple Allee ef-
fects (5) (grey curve) as function of the non-fertile prey population
b. We observe that the depensation region for the multiple Allee
effects is always smaller than the depensation region for the strong
Allee effect.

When the alternative food (2) and the multiple Allee effect (4) are included in
the modified May–Holling–Tanner model (1) it becomes

dx

dt
= x

(
r

x+ b

)(
1− x

K

)
(x−m)− qxy,

dy

dt
= sy

(
1 − y

nx+ c

)
.

(7)

The aim of this manuscript is to study the dynamics of (7) and, in particular,
understanding the change in dynamics the multiple Allee effect and the alterna-
tive food source causes. Additionally, models (1) and (7) without alternative food
sources revealed that there exists a subset of the system parameters where the preda-
tor and prey population goes extinct [37]. However, these models assumed different
dynamics at low abundance, and the absence of an alternative prey. We find that
the alternative food source desingularises the origin and it prevents the extinction
of the predator populations. Moreover, we study the basins of attraction of the
stable positive equilibrium point(s) by modifying the predation rate q and/or the
alternative food source c. Moreover, we will show that the addition of the alterna-
tive food source and the multiple Allee effects will lead to complex dynamics, and
different types of bifurcations such as Hopf bifurcations, homoclinic bifurcations,
saddle-node bifurcations and Bogadonov-Takens bifurcations. This manuscript also
extends the properties of the May–Holling–Tanner model with multiple Allee ef-
fects studied in [37] that is (7) with c = 0 by showing the impact of the inclusion
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of alternative food sources for predators. In addition, it complements the results of
the May–Holling–Tanner model considering only alternative food for the predator
studied in [7, 20] and the model considering only a single Allee effect on the prey and
no alternative food for the predator studied in [50, 53]. Model (1) with functional
response Holling type II, i.e. H(x) = qx/(x + a), was studied in [28] where the
authors showed that there is a region a parameter space where the unique positive
equilibrium point is globally asymptotically stable. This model was also studied
in [45] where the authors proved the existence of two limit cycles and the species
can thus coexist and oscillate.

The basic properties of the model are briefly described in Section 2. In Section 3
we prove the stability of the equilibrium points and give the conditions for the
different types of bifurcations. In addition, we discuss the impact changing the
predation rate or the alternative food source has on the basins of attraction of the
positive equilibrium point in system (7). We further discuss the results and give
the ecological implications in Section 4.

2. The model. Following [5, 7, 8, 13], we introduce dimensionless variables (u, v, τ)

by the function ϕ : Ω̆× R→ Ω× R, where ϕ(u, v, τ) = (x, y, t) = (Ku, nKv, τ(u+

c/(nK))(u + b/K)/r), Ω = {(x, y) ∈ R2, x ≥ 0, y ≥ 0} and Ω̆ = {(u, v) ∈ R2, u ≥
0, v ≥ 0}. Additionally, we set B := b/K, C := c/(nK), M := m/K ∈ (0, 1),
S := s/r and Q := qnK/r, such that (M,B,C, S,Q) ∈ Π = (0, 1)× R4

+. This way,
we convert (7) to a topologically equivalent nondimensionalised model given by

du

dτ
= u(u+ C) ((u−M) (1− u)−Q(u+B)v) ,

dv

dτ
= Sv (u+B) (u− v + C) .

(8)

The mapping ϕ is a diffeomorphism which preserve the orientation of time since
detϕ(u, v, τ) = nK2u(u + b/K)/r > 0 [14]. Therefore, system (8) is topologically
equivalent to system (7) in Ω. Furthermore, system (8) is of Kolmogorov type since
du/dτ = uR(u, v) and dv/dτ = vW (u, v), with R(u, v) = (u+ C)(u−M)(1− u)−
Q(u+C)(u+B)v and W (u, v) = S(u+B)(u−v+C). The u-nullcline of system (8)

in Ω̆ is v = (u−M)(1−u)/Q(u+B), while the v-nullcline in Ω̆ is v = u+C. Hence,

the equilibrium points in Ω̆ for the system (8) are (0, 0), (M, 0), (0, C) (1, 0) and
(u∗, v∗), where u∗ is determined by the roots of the following equation

p(u) := (u−M)(1− u) = Q(u+ C)(u+B) =: Qd(u), and v∗ = u∗ + C .

(9)

We observe that lim
u→±∞

p(u) = −∞ and lim
u→±∞

d(u) =∞. Hence, p(u) can intersect

d(u) in the first quadrant in two points; one point or not at all, see Figure 2. The
solutions of the equation (9) are given by

u1,2 =
1

2(1 +Q)

(
1 +M −Q(B + C)±

√
∆
)

with

∆ = (1 +M −Q(B + C))2 − 4(M +BCQ)(1 +Q),

(10)

such that M < u1 ≤ u3 ≤ u2 < 1, where u3 = (1 + M − Q(B + C))/(2(1 + Q)).
That is, if (9) has two real-valued solutions then these solutions are in the interval
(M, 1).

Varying the parameters Q and C modifies the value of ∆ and hence the number
of equilibrium points in the first quadrant. Specifically:
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Figure 2. The intersections of the functions p(u) (red line) and
d(u) (blue lines) for three different possible cases: (a) If ∆ < 0 (10)
then p(u) and d(u) do not intersect, and (8) does not have positive
equilibrium points; (b) If ∆ = 0 then p(u) and d(u) intersect in
one point, and (8) has a unique positive equilibrium point; (c) If
∆ > 0 then p(u) and d(u) intersect in two points, and (8) has two
distinct positive equilibrium points.

(a) System (8) has no positive equilibrium points if ∆ < 0;
(b) System (8) has two positive equilibrium points P1,2 = (u1,2, u1,2 +C) if ∆ > 0;

and
(c) System (8) has one positive equilibrium point P3 = ((u3, u3 + C)) (order two)

if ∆ = 0.

3. Main results. In this section, we discuss the stability of the equilibrium points
and their bifurcations.

Theorem 3.1. The region Φ = {(u, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 +C} is an invariant
region and attracts all trajectories starting in the first quadrant.

Proof. We follow the proof of [6] where a Holling–Tanner model with strong Allee ef-
fect is studied. The main difference between the system studied in [6] and system (8)
is that the equilibrium points are located in Φ = {(u, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1+C}.
However, the invariant region Γ is the same invariant region showed in [6] and the
system is also a Kolmogorov type. Therefore, trajectories enter into Γ and remain
in Γ, see Figure 3. Moreover, trajectories inside Λ = {(u, v), u > 1, 0 < v < u+C}
enter into Φ or the region Θ = {(u, v), u > 1, v ≥ u + C} since du/dτ < 0 and
dv/dτ > 0, see Λ and Θ in Figure 3. The u-component of trajectories in Θ are non-
increasing as time increases and then these trajectories enter into Γ\Φ. As a result,
all trajectories starting outside Γ enter into Γ and end up in Φ since if u < 1 + C,
then dv/dτ < 0.

3.1. Nature of equilibrium points. The Jacobian matrix J(u, v) of system (8)
is

J(u, v) =

(
J11(u, v) + J12(u, v) −uQh(u)
Sv(B + C + 2u− v) S(u+B)(C + u− 2v)

)
, (11)
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Figure 3. Phase plane of system (8) and its invariant regions Φ
and Γ\Φ.

where J11(u, v) = ((1 − u)(u −M) − Q(u + B)v)(2u + C), J12(u, v) = (M − 2u +
1−Qv)(u+ C)u and d(u) is defined in (9).

Lemma 3.2. The equilibrium points (0, 0) and (1, 0) are saddle points.

Proof. The Jacobian matrix evaluated at (0, 0) gives

J(0, 0) =

(
−CM 0

0 BCS

)
,

with eigenvalues λ1(0,0) = −CM < 0 and λ2(0,0) = BCS > 0 and eigenvectors

ψ1
(0,0) =

(
1 0

)T
and ψ2

(0,0) =
(
0 1

)T
.

Similarly, the Jacobian matrix evaluated at (1, 0) gives

J(1, 0) =

(
(M − 1)(C + 1) −Q(B + 1)(C + 1)

0 S(B + 1)(C + 1)

)
,

with eigenvalues λ1(1,0) = S(C + 1)(B + 1) > 0 and, since 0 < M < 1, λ2(1,0) =

(M − 1)(C + 1) < 0. The associated eigenvectors are

ψ1
(1,0) =

(
−Q(B + 1)/S(B + 1) + 1−M 1

)T
and ψ2

(1,0) =
(
1 0

)T
.

Thus, it follows that (0, 0) and (1, 0) are a saddle points in system (8).

Lemma 3.3. The equilibrium point (M, 0) is a repeller.

Proof. The Jacobian matrix evaluated at (M, 0) gives

J(M, 0) =

(
−M(M − 1)(C +M) −MQ(B +M)(C +M)

0 S(B +M)(C +M)

)
,
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Figure 4. For M = 0.05, B = 0.05, C = 0.5, Q = 0.8, and
S = 0.175, such that ∆ < 0 (10), the equilibrium point (0, C) is a
global attractor for trajectories starting in the first quadrant. The
blue (red) curve represents the prey (predator) nullcline.

with eigenvalues λ1(M,0) = M(1−M)(C+M) > 0 and λ2(M,0) = M(1−M)(C+M) >

0 and eigenvectors

ψ1
(M,0) =

(
MQ(B +M)/(M(1−M)− S(B +M)) 0

)T
and ψ2

(M,0) =
(
1 0

)T
.

It follows that (M, 0) is a hyperbolic repeller in system (8).

Lemma 3.4. If ∆ ≥ 0 (10), then the equilibrium point (0, C) is a local attrac-
tor. Moreover, if ∆ < 0 (10), then (0, C) is a global attractor (for positive initial
conditions).

Proof. The Jacobian matrix evaluated in the point (0, C) is

J(0, C) =

(
−C(M +BQC) 0

BCS −BCS

)
,

with eigenvalues λ1(0,C) = −C(BCQ + M) < 0 and λ2(0,C) = −BCS < 0 and

eigenvectors ψ1
(0,C) =

(
−(M +B(CQ− S))/BS 1

)T
and ψ2

(0,C) =
(
0 1

)T
. It

follows that (0, C) is local attractor in system (8). Moreover, if ∆ < 0 (10), then
(0, C) is the only stable equilibrium point in Φ. Hence, by the Poincaré–Bendixson
Theorem (0, C) is the unique ω-limit for all trajectories starting in the first quadrant,
since by Theorem 3.1 all positive solutions are bounded and eventually end up in
Γ, see Figure 4.

Next, we consider system parameters values such that system (8) has two equilib-
rium points in the first quadrant, that is, we assume ∆ > 0 (10). These equilibrium
points lie on the line v = u + C such that Qh(u) = g(u) (9) and J11 = 0 (11).
Hence, the Jacobian matrix (11) at these equilibrium points simplifies to

J(ui, ui + C) =

(
J12(ui, ui + C) −Qui(ui +B)(ui + C)

S(ui +B)(ui + C) −S(ui +B)(ui + C)

)
, (12)

with J12(ui, ui + C) = (M − 2ui + 1−Q(ui + C))(ui + C)ui, i = 1, 2 and ui given
in (10). The determinant and the trace of the Jacobian matrix (12) are:
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det(J(ui, ui + C)) =Sui(ui +B)(ui + C)2(−M + 2ui(1 +Q)

− 1 +Q(B + C)),

tr(J(ui, ui + C)) =(ui +B)(ui + C) (f(ui)− C) ,

where

f(ui) =
(ui(M − 2ui −Qui + 1)− S(B + ui))

uiQ
. (13)

Thus, the sign of the determinant depends on the sign of −M + 2ui(1 + Q) − 1 +
Q(B + C) and the sign of the trace depends on the sign of f(ui) − C. Moreover,
the eigenvalues of the Jacobian matrix of system (8) evaluate at P1 = (u1, u1 + C)
are

λ1,2P1
= −

(u1 + C) (BS + u1(−1−M + S + CQ+ u1(2 +Q)))±
√
p1(u1)

2
and eigenvectors

ψ1,2
P1

=

BS + u1(1 +M + S − CQ− u1(2 +Q))±
√
p2(u1)

2S(u1 +B)
1


with

p1(u1) =− 4S(u1 +B)(u1BQ+ u1(−1−M + CQ+ u1Q

+ u1(2 +Q))) + (BS + u1(−1−M + S + CQ+ (2 +Q)u))2,

p2(u1) =(B2S(−4Qu1 + S) + 2BS(1 +M + S − CQ− 4Qu1)u1

+ ((1 +M − CQ)2 − 2(−1−M + CQ+B(2 +Q) + 2Qu1)S

+ S2)u21 − 2(2 +Q)(1 +M + S − CQ)u31 + (2 +Q)2u41).

Note that the first element of ψ1
P1
> 0 since 1 +M −CQ > u1(2 +Q). Similarly, it

turns out that ψ2
P1
> 0. This gives the following results.

Lemma 3.5. If ∆ > 0 (10), then the equilibrium point P1 is a saddle point.

Proof. Evaluating −M + 2u(1 +Q)− 1 +Q(B + C) at u1 gives:

−M + 2u1(1 +Q)− 1 +Q(B + C) = −
√

∆ < 0.

Hence det(J(P1)) < 0 and P1 is thus a saddle point, see Figure 5.

Lemma 3.6. If ∆ > 0 (10), then the equilibrium point P2 is:

(i) a repeller if 0 < C < CH = f(u2); and
(ii) an attractor if C > CH ,

with f defined in (13).

Proof. Evaluating −M + 2u(1 +Q)− 1 +Q(B + C) at u2 gives:

−M + 2u2(1 +Q)− 1 +Q(B + C) =
√

∆ > 0.

Hence det(J(P2)) > 0. Evaluating f(u)− C at u = u2 gives

f(u2)− C =
(u2(M − 2u2 −Qu2 + 1)− S(B + u2))

u2Q
− CH .

Therefore, the sign of the trace, and thus the behaviour of P2, depends on the parity
of f(u2)− CH , see Figure 5.
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Figure 5. Let the system parameter (M,B,C,Q) =
(0.07, 0.0645, 0.32, 0.736) be such that ∆ > 0 (10). (a) If
S = 0.15 such that C < CH , then the equilibrium point P2 is
stable. (b) If S = 0.05 such that C > CH , then the equilibrium
point P2 is unstable. The blue (red) curve represents the prey
(predator) nullcline. The orange (light blue) region represents the
basin of attraction of the equilibrium point (0, C) (P2). Note that
the same color conventions are used in the upcoming figures.

If ∆ > 0 and C > CH , then system (8) has two stable equilibrium points (0, C)
and P2. Furthermore, if C = CH , then tr(J(P2)) = 0 and P2 undergoes a Hopf
bifurcation [14].

Finally, if ∆ = 0 (10) then the equilibrium points P1 and P2 collapse and sys-
tem (8) has a unique equilibrium point in the first quadrant.

Lemma 3.7. If ∆ = 0 (10), then the equilibrium point P3 is:

(i) a saddle-node attractor if C > CSN = f(u3); and
(ii) a saddle-node repeller if C < CSN ,

with f defined in (13).

Proof. Evaluating −M + 2u(1 +Q)− 1 +Q(B + C) at u = u3 gives:

−M + 2u3(1 +Q)− 1 +Q(B + C) = 0.

Hence det(J(P3)) = 0. Evaluating f(u)− C at u = u3 gives

f(u3)− C =
(u3(M − 2u3 −Qu3 + 1)− S(B + u3))

u3Q
− C.

Therefore, the sign of the trace, and thus the behaviour of P3, depends on the parity
of f(u3)− C, see Figure 6.

3.2. Bifurcation analysis. In this section we present some of the possible bifur-
cation scenarios when ∆ = 0 (10) in system (8).

Theorem 3.8. If ∆ = 0 (10), then by changing Q system (8) experiences a saddle-
node bifurcation at the equilibrium point P3.

Proof. In order to prove the saddle-node bifurcation at P3 = (u3, u3 +C) with u3 =
(1+M−Q(B+C))/(2(Q+1)) we follow the Sotomayor’s Theorem [41]. First, if we
consider ∆ = 0 then system (8) has one positive equilibrium point P3 = (u3, u3+C).
Moreover, in Lemma 3.7 we showed that if ∆ = 0, then det(J(P3)) = 0. So,
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Figure 6. If M = 0.05, B = 0.05, S = 0.125 and Q = 0.60821818,
then ∆ = 0. Therefore, the equilibrium point P3 is (a) a saddle-
node repeller if C > CSN and (b) a saddle-node attractor if C <
CSN .

λ = 0 is an eigenvalue of the Jacobian matrix J(P3) with eigenvector U =
(
1 1

)T
.

Furthermore, we denote W as the eigenvector corresponding to the eigenvalue λ = 0
of the Jacobian matrix J(P3)T

W =

(
− 2S(Q+ 1)

Q(1 +M −Q(B + C))
1

)T

The vector form of system (8) is given by

F ((u, v);Q) =

(
u(u+ C)((1− u)(u3 −M)−Q(u+B)v)

Sv(u+B)(u− v + C)

)
,

then differentiating F with respect to the bifurcation parameter Q at P3 gives

FQ(P3;Q) =

(
−u3(u3 +B)(u3 + C)2

0

)
,

with −u3(u3 +B)(u3 +C)2 =
1

16(1 +Q)4
(1 +M −BQ−CQ)(1 +M +BQ−CQ+

2B)(−2C −M +BQ− CQ− 1)2.
Therefore,

W · FQ(P3;Q) =

− S(2B + 1 +M)(1 +M −BQ− CQ)(2C +M −BQ+ CQ+ 1)2

8Q(Q+ 1)3(M −Q(B + C) + 1)
−

SQ(B − C)(1 +M −BQ− CQ)(2C +M −BQ+ CQ+ 1)2

8Q(Q+ 1)3(M −Q(B + C) + 1)
< 0,

since we assumed ∆ = 0 and u3 > 0.
Next, we analyse the expression W · [D2F (P3;Q)(U,U)]. Therefore, we first

compute the Hessian matrix at the equilibrium point P3

D2F (P3;Q)(U,U) =

(
−2(C(2−M) + 3− 2M +Q(3(2 +B) + C(3 +B)))

2CS

)
.
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Hence, since M ∈ (0, 1), we get

W · [D2F (P3;Q)(U,U)] =

2CS +
4S(Q+ 1)(C(2−M) + 2(1−M) + 1 + 6Q+BCQ+ 3BQ+ 3CQ)

Q(1 +M −Q(B + C))
> 0 ,

again since we assumed ∆ = 0 and u3 > 0.
Thus, the conditions of Sotomayor’s Theorem [41] are satisfied. Hence, system (8)

experiences a saddle-node bifurcation at the equilibrium point P3.

If ∆ = 0 (10) and C = CSN = f(u3), then the equilibrium points collapse
and system (8) has one positive equilibrium point P3. This equilibrium point is a
cusp point given that a non-degeneracy condition is met. To show that, we first
translate the equilibrium point P3 = (u3, u3+C) to the origin by setting X = u−u3
and Y = v − u3 − C and expand system (8) in a power series around the origin.
System (8) can now be written as

dX

dτ
=

1

Q2
S(S +BQ)(S + CQ)X − 1

Q2
S(S +BQ)(S + CQ)Y +

1

4(Q+ 1)2
(BCQ3

− 3B2Q2 −B2Q3 +BCQ2 + 4BCQ+ 4BMQ+ 4BQ+ 2C2Q− CMQ2

+ CMQ− 2CM − CQ2 + CQ− 2C +M2Q−M2 + 2MQ− 2M +Q

− 1)X2 − 1

4(Q+ 1)2
Q(−2C −M +BQ− CQ− 1)(−M +BQ+ CQ

− 1)XY +O(|X,Y |3),

dY

dτ
=

1

Q2
S(S +BQ)(S + CQ)X +

1

Q2
S(S +BQ)(S + CQ)Y +

1

2(Q+ 1)
S(2C

+M −BQ+ CQ+ 1)X2 + S(B − C)XY +
S

2(Q+ 1)
(2B +M +BQ

− CQ+ 1)Y 2 +O(|X,Y |3).

(14)
Making the affine transformation

U = X and V =
1

Q2
S(S +BQ)(S + CQ)X − 1

Q2
S(S +BQ)(S + CQ)Y

system (14) becomes

dU

dτ
=V − 1

4(Q+ 1)2
(2C + 2M − 2BQ2 + CQ2 − 2C2Q+ 3B2Q2 + 2B2Q3

− 2C2Q2 − C2Q3 + 2CM − 4BQ+ CQ+M2 − 3BCQ2 −BCQ3

− 2BMQ2 + CMQ2 − 4BCQ− 4BMQ+ CMQ+ 1)U2

+
1

4S(S +BQ)(S + CQ)(Q+ 1)2
(Q3(M −BQ− CQ+ 1)(2C +M

−BQ+ CQ+ 1)UV +O(|U, V |3),
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dV

dτ
=

1

Q4
S(S +BQ)(S + CQ)(Q2 + S3 +BQS2 + CQS2 +BCQ2S)U2

+
1

4Q2(Q+ 1)2
(4S2(S +BQ)(S + CQ)(Q+ 1)(3B − C +M + 2BQ

− 2CQ+ 1) +Q3(M −BQ− CQ+ 1)(2C +M −BQ+ CQ+ 1))UV

− 1

2(Q+ 1)
(2B +M +BQ− CQ+ 1)V 2 +O(|U, V |3).

(15)
By Lemma 3.1 presented in [52] we obtain an equivalent system of (15) as follows

dU1

dτ
=V1,

dV1
dτ

=L20U
2
1 + L11U1V1 +O(|U1, V1|3),

(16)

with L20 = S(S+BQ)(S+CQ)(Q2+S3+BQS2+CQS2+BCQ2S)/Q4 > 0 since all
the parameters are positive and L11 = (4S2(S+BQ)(S+CQ)(Q+1)(3B−C+M+
2BQ−2CQ+1)+Q2(Q(M−BQ−CQ+1)(2C+M−BQ+CQ+1)−2(2C+2M−
2BQ2+CQ2−2C2Q+3B2Q2+2B2Q3−2C2Q2−C2Q3+2CM−4BQ+CQ+M2−
3BCQ2−BCQ3−2BMQ2+CMQ2−4BCQ−4BMQ+CMQ+1)))/(4Q2(Q+1)2).
If L11 6= 0, then P3 is a cusp point of codimension two by the result presented in [41].

This is also a necessary condition for system (8) to undergo a Bogdanov-Takens
bifurcation [41]. One needs to vary two parameters in order to encounter this bifur-
cation in a structurally stable way and to describe all possible qualitative behaviours
nearby [14, 41]. The proof of a Bogdanov-Takens bifurcation can be obtained by
following [29] and [52]. In these articles, the authors showed that their system un-
dergoes to a Bogdanov–Takens bifurcation by unfolding the system around the cusp
of codimension two. Moreover, by using a series of normal form transformations
one can check the non-degeneracy condition. Nowadays, there are several computa-
tional methods to find Bogdanov-Takens points. These methods are implemented
in software packages such as MATCONT [17]. Figure 8 illustrates the Bogdanov-
Takens bifurcation which was detected with MATCONT in the (Q,C)-plane with
parameter values (M,B, S) = (0.05, 0.1, 0.071080895) fixed.

3.3. Basins of attraction. In this section, we analyse the impact of the modifica-
tions of the parameters C and Q on the basins of attraction of the stable equilibrium
points of system (8). Note that the parameter C = c/(nK) of system (8) is equiv-
alent to the alternative food source c in system (7) since the function ϕ is a diffeo-
morphism preserving the orientation of time. Similarly, the parameter Q = qnK/r
of system (8) is equivalent to the predation rate q in system (7). In particular, we
consider the system parameters (B,M,S) = (0.1, 0.1, 0.157)1 and vary Q and C.
For Q and C not too big system (8) has two positive equilibrium points, namely P1

and P2. The equilibrium points on the axis and P1 do not change stability proven
in Lemmas 3.2, 3.3, 3.4 and 3.5, while, P2 can be stable or unstable.

In order to study the basins of attraction of the equilibrium points (0, C) and P2

we use the same notation for the (un)stable manifold of the equilibrium point P1 as
used in [5, 6]. That is, we defind Wu,s

↗ (P1) as the branch of the (un)stable manifold

of P1 that goes up to the right andWu,s
↙ (P1) as the branch of the (un)stable manifold

1Note that changing B instead of Q has the same qualitative effect on the basin of attraction,
see right pane of Figure 8.
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Figure 7. For M = 0.05, B = 0.05, C = 0.58951256, S = 0.125
and Q = 0.60821818, such that ∆ = 0 and f(u3) = CSN , the point
(0, C) is an attractor and the equilibrium point P3 is a cusp point.

Figure 8. The bifurcation diagram of system (8) for M = 0.05
and S = 0.071080895 fixed and created with the numerical bifur-
cation package MATCONT [17]. In the left panel B = 0.1 fixed
and varying Q and C and in the right panel Q = 0.608 fixed and
varying B and C. The curve CH represents the Hopf curve, CHOM

represents the homoclinic curve, CSN represents the saddle-node
curve, and BT represents the Bogdanov-Takens bifurcation.The
corresponding phase planes for the different regions are shown in
Figure 9.

of P1 that goes down to the left. The branch W s
↗(P1) is connected with (M, 0) and

Wu
↙(P1) is connected with (0, C) since the nullclines form a bounding box from

which trajectories cannot leave. Furthermore, everything in between of these two
branches and the x-axis also asymptotes to the equilibrium point (0, C). Therefore,
the stable manifold of the saddle point P1 acts as a separatrix curve between the
basins of attraction of P2 (when it is stable) and (0, C), see Figure 9.

Considering the invariant region Φ, there are qualitatively six different cases for
the boundaries of the basins of the equilibrium points P2 and (0, C), then we get:

(i) For C < CHOM such that the equilibrium point P2 in system (8) is stable,
see Lemma 3.6 (since CHOM < CH). For C small enough W s

↙(P1) intersects
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Figure 9. The phase planes of system (8) for B = 0.1, M = 0.05,
Q = 0.75 and S = 0.071080895 fixed and varying C. This last
parameter impacts the number of equilibrium points of system (8).
The light blue area in the phase plane represent the basins of at-
traction of the equilibrium points P2, while the orange area in the
phase plane represent the basins of attraction of the equilibrium
points (0, C).
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the boundary of Φ. Hence, it forms a separatrix curve in Φ, see panel (i)
in Figure 9. In addition, by increasing C the stable manifold of P1 connects
first with (1, 0) and then with (M, 0), again forming the separatrix curve, see
panels (ii) and (iii) in Figure 9.

(ii) For C = CHOM , then W s
↙(P1) connects with Wu

↗(P1), therefore it form a ho-
moclinic curve. Which is the separatrix curve between the basins of attraction
of (0, C) and P2, see panel (iv) in Figure 9.

(iii) For CHOM < C < CH , there is an unstable limit cycle surrounding P2 which
acts as a separatrix curve between the basins of attraction of P2 and (0, C).
This limit cycle is created around P2 via the Hopf bifurcation at C = CH [21]
and terminates via a homoclinic bifurcation at C = CHOM , see panel (v) in
Figure 9.

(iv) For CH < C < CSN , the equilibrium point P2 is unstable, see Lemma 3.6, and
(0, C) is globally asymptotically stable. Hence, Φ is the basin of attraction of
(0, C), see panel (vi) in Figure 9.

(v) For C = CSN , the equilibrium points P1 and P2 collapse, see Lemma 3.7.
Hence, Φ is the basin of attraction of (0, C), see panel (vii) in Figure 9.

(vi) For CSN < C, system (8) dose not have positive equilibrium points, see
Lemma 3.4. Hence, Φ is also the basin of attraction of (0, C), see panel (viii)
in Figure 9.

4. Conclusions. In this manuscript, a modified May–Holling–Tanner predator-
prey model with multiple Allee effects for the prey and alternative food sources for
the predators was studied. Using a diffeomorphism, we transformed the modified
May–Holling–Tanner predator-prey model to a topologically equivalent system, sys-
tem (8). Subsequently, we analysed system (8) and we proved that the equilibrium
points (0, 0) and (1, 0) are saddle points, (M, 0) is a repeller and (0, C) is an attrac-
tor for all parameter values, see Lemmas 3.2, 3.3 and 3.4. Additionally, there exist
at most two positive equilibrium points, one of them, P1, is a saddle point, while the
other, P2, can be an attractor or a repeller, depending on the trace of its Jacobian
matrix. Both equilibrium points can collapse having conditions for a saddle node
bifurcations and cusp point [52] (Bogdanov-Takens bifurcation). We also showed
the existence of a homoclinic curve, determined by the stable and unstable mani-
folds of the equilibrium point P1 enclosing the second equilibrium point P2. When
the homoclinic breaks it creates a non-infinitesimal limit cycle, see Lemmas 3.5, 3.6
and Figure 8.

Moreover, by choosing the bifurcation parameters (C,Q), or (B,C), we have
obtained significant bifurcation diagrams, see Figure 8. It follows that – for a
large nondimensionalised predation Q and a small nondimensionalised proportion
of alternative food C – co-existence is expected. Similarly, when the proportion
of nondimensionalised alternative food C is bigger than the proportion of nondi-
mensionalised predation Q co-existence is expected. The bifurcation diagrams and
associated phase planes, see Figure 9, also shows that there exists complexity for
system (8) including the collision of the equilibrium points leading to different type
of bifurcation.

Since the function ϕ is a diffeomorphism preserving the orientation of time, the
dynamics of system (8) are topologically equivalent to the dynamics of system (7).
Hence, the parameters (C,Q) impact the number of equilibrium points of system (8)
in the first quadrant and change the behaviour of the system, and, as C = c/(nK)
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Figure 10. The size of the basin of attraction of p2, in units2,
of the stable equilibrium point p2 of system (7) considering strong
Allee effect (red line) and multiple Allee effect (blue line) for vary-
ing the non-fertile population b and with other system parameters
r = 14, K = 150, m = 15, q = 1.08, s = 1.25, n = 0.05 and
c = 0.75 fixed. The blue dotted-dashed line represents the re-
gion where the stable manifold of the saddle equilibrium point p1
connects with (K,0) and the blue dashed line represent the region
where the equilibrium point p2 is surrounded by an unstable limit
cycle.

and Q = qnK/r, the system parameters (c, n, k, q, r) will thus impact the behaviour
of system (7). Therefore, self-regulation depends on the values of these parameters.
For instance, keeping all parameters fixed, but increasing the alternative food source
c, one expects to see a change in behavior and dynamics similar to the one shown
in Figure 8 and 9. All these results show that dynamical behavior of system (7)
becomes more complex under the modification of the system parameters when com-
pared to the May–Holling–Tanner model with the strong and weak Allee effect (3)
studied in [37].

In Figure 1 we showed that the inclusion of a multiple Allee effect changes the
shape of the per-capita growth of the prey, and, in particular, reduces the region of
depensation. Moreover, we can see in Figure 10 that there exist a critical non-fertile
prey population bcr for which the basin of attraction of the equilibrium point p2 of
system (7) is smaller than the basin of attraction of the related p2 of system (1)
considering an alternative food source (2) and with a strong Allee effect (3). Note
that the non-fertile prey population of 60% is realistic. For instance, Monclus et
al. [39] studied the impact of the different population densities on stthe marmot
reproduction. This study used the proportion of fertile female adults which fluctu-
ated between 2.13 and 19.15% of the total population density. Moreover, we can
also conclude that the basin of attraction of the stable positive equilibrium point
p2 increases when we reduce the depensation in the model.

Finally, the techniques used in this manuscript show that there is a strong con-
nection between the analysis of the manifold and the basins of attraction of the
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equilibrium points. This analysis can be applied in population dynamics in order
to predict the behaviour in models where there is variation in the non-fertile pop-
ulation. Moreover, we showed that the combination of different techniques such as
numerical simulations and bifurcation analysis can be very useful for showing the
temporal dynamics in predation interaction.

REFERENCES
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